Table of Contents

Schedule at a Glance
FiO/LS Chairs' Welcome Letters
General Information
Stay Connected
Mobile Арр
Technical Paper Download
Awards Ceremony and Conference Plenary Session
Awards and Special Recognitions
Special Symposia
Symposium on the 50 th Anniversary of Optical Sciences
Laser Science Symposium on Undergraduate Research
Symposium on Translational Biophotonics – Focus on Cancer15
Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard15
Symposium on Laser Particle Acceleration and Novel Acceleration Methods
Symposium on Radiation Reaction in Ultra-High Intensity Lasers16

FiO/LS Special Events
Exhibit Information
FiO/LS Committees
FiO/LS Agenda of Sessions
Explanation of Session Codes
FiO/LS Abstracts
FiO/LS Subject Index
Key to Authors and Presiders

Program updates and changes may be found on the Conference Program Update Sheet distributed in the registration bags.

Conference-at-a-Glance	Sunday, 19 October	Monday, 20 October	Tuesday, 21 October	Wednesday, 22 October	Thursday, 23 October	
GENERAL						
Registration	12:00–18:30	07:00–18 :00	07:00–17:30	07:30–18:00	07:30–18:00	
Speaker/Presider Check-in		12:00–18:00	07:00–17:30	07:30–18:00	07:30–16:00	
Exhibit - featuring FIO Poster Sessions, OSA Student Chapter Competition and more.			10:00–16:00	10:00-14:00		
PROGRAMMING						
Symposium on the 50th Anniversary of Optical Sciences	16:00–18:30					
Plenary Session/Award Presentations		08:00-12:00				
Laser Science Symposium on Undergraduate Research		12:00–18:00				
Symposium on Translational Biophotonics - Focus on Cancer		13:30–15:30				
DLS Dissertation Award Session		16:00–18:00				
Environmental Sensing Special Talk: AFOSR Program on Imaging and Beam Control Through Deep Turbulence		18:00–19:00				
Technical Sessions		13:30–18:00	08:00–17:30	08:00–18:00	08:00–18:00	
Poster Sessions (in Exhibit Hall)			12:00–13:30	12:00–13:30		
FiO Postdeadline Paper Sessions					10:30–12:00	
Symposium on 50 Years of Lasers in Opthalmology and the New ANSI Safety Standard				08:00-11:00		
Symposium on Laser Particle Acceleration and Novel Acceleration Methods				13:30–18:00		
Symposium on Radiation Reaction in Ultra-High Intensity Lasers					08:00–15:45	
SPECIAL EVENTS						
Conference Welcome Reception	18:30–20:00					
OSA Optical Communications Technical Group Networking Event		13:30–15:00				
Meet OSA's Journal Editors		17:30–19:00				
Minorities and Women in OSA (MWOSA) Networking Reception		17:30–19:00				
OSA Student Member Reception		19:00–22:00				
VIP Industry Leaders Networking Event: Connecting Corporate Executives, Recent Graduates and Students			08:00–09:30			
"Mission IYL" OSA Student Chapter Competition (in Exhibit Hall)			12:00–16:00			
Meet the APS Journal Editors			15:30–17:00			
OSA Annual Business Meeting			18:00–19:00			
APS Annual Business Meeting			18:00–19:00			
OSA Holography & Diffractive Optics Technical Group Networking Event			18:00–19:00			
Laser Science Banquet (Ticket Required)			19:00–21:00			
OSA Science Educators' Day				17:00-20:00		
Celebrating 50 Years of Optical Science at Old Tucson (Pre-registration required).				18:00-22:00		
OSA Applications of Visual Science Technical Group Networking Event				18:30–19:30		
University of Arizona/Steward Observatory Mirror Lab Tour (Pre-registration required)					13:00–17:00	

All events at JW Marriott Tucson Starr Pass Resort unless otherwise noted. Times are subject to change. Please check the Conference Program & Exhibit Guide Addendum and Update Sheet for updated information. All times reflect Mountain Standard Time Zone.

Welcome to Frontiers in Optics 2014

Welcome to Tucson, Arizona — one of the premier centers of optics and photonics research in the USA. We are pleased that you have chosen to join us for the 2014 Frontiers in Optics (FiO) conference, the 98th Annual Meeting of The Optical Society.

This year's conference encompasses the breadth of optical science and engineering and provides an atmosphere that fosters the exchange of information between those working on fundamental research and those looking for solutions to engineering problems. On behalf of the FiO Subcommittee Chairs, we would like to thank our colleagues from the Division of Laser Science (DLS) of the American Physical Society (APS) for assisting in cultivating joint topics and sessions that will greatly enhance the experience of the attendees at FiO 2014.

The technical program features over 700 invited, contributed oral and poster presentations by celebrated members of the community describing some of the most exciting advances in their fields. Special symposia and other major events further highlight major advances in many selected areas.

Rebecca Richards-Kortum, *Rice Univ., USA*, the FiO plenary speaker, will speak on Point-of-Care Diagnostics for Low-Resource Settings at the Plenary Session and Awards Ceremony, Monday, 20 October, 08:00 to 12:00. Paul Corkum, *National Research Council, Canada,* winner of the OSA 2014 Frederic Ives Medal/Jarus W. Quinn Prize, will also give his address. They will be joined by the LS plenary speaker and the recipient of the APS 2014 Arthur L. Schawlow Prize in Laser Science.

FiO is pleased to feature several special symposia – The Symposium on the 50th Anniversary of Optical Sciences (Sunday, 19 October, 16:00–18:30); the Symposium on Translational Biophotonics – Focus on Cancer (Monday, 20 October, 13:30–15:30); the Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard (Wednesday, 22 October, 08:00–11:00); the Symposium on Laser Particle Acceleration and Novel Acceleration Methods (Wednesday, 22 October, 13:30–18:00) ; and the Symposium on Radiation Reaction in Ultra-High Intensity Lasers (Thursday, 23 October, 08:00–15:45). Details about all the symposia are listed on the Symposia pages of this program.

This year's meeting is filled with many informational and networking events. Some of the highlights of FiO 2014 include the following:

- The FiO/LS Conference Welcome Reception will be held on Sunday, 19 October, from 18:30 to 20:00.
- OSA Students will be welcomed at the OSA Student Member reception on Monday, 20 October from 19:00–22:00.
- If you are an OSA member, be sure to join us at the OSA Member Reception on Tuesday, 21 October, from 19:00–21:00.
- Late-breaking advances in optics will be presented on Thursday, 23 October, in the FiO Postdeadline Paper Sessions, running from 10:30–12:00.
- FiO is pleased to announce the 6th annual Emil Wolf Outstanding Student Paper Competition. One award winner will be selected from each of the eight FiO

subcommittees. Selections will be made based on the quality of the submitted technical summary and presentation. Winners will be announced at the end of the conference and in the next issue of *Optics & Photonics News* (OPN).

- Tuesday and Wednesday, while you are enjoying the poster sessions and the coffee breaks in the Exhibit Hall and or taking breaks from the presentations, please see the latest in scientific and optical instrumentation and information that our exhibitors have on display!
- Science Educators' Day will be held on Wednesday, 22 October, from 17:00–20:00, in the Tucson Ballroom, Salon E. Hosted by The Optical Society, Science Educator's Day (EDAY) provides middle and high school science teachers with a wide variety of optics-focused lesson plans and classroom demonstration guides. EDAY attendees receive materials that can be used in middle and high school classrooms.

We welcome you to FiO 2014 and encourage you to take full advantage of the benefits of this year's social and networking opportunities, technical sessions, corporate programming, poster sessions and exhibition!

Alfred U'Ren General Chair Instituto de Ciencias Nucleares, Mexico

Adam Wax General Chair Duke Univ., USA

P. Scott Carney Program Chair Univ. of Illinois at Urbana-Champaign, USA

Urs Utzinger Program Chair Univ. of Arizona, USA

Welcome to Laser Science 2014

The leadership of the Division of Laser Science (DLS) of the American Physical Society (APS) is pleased to welcome you to our 30th annual meeting, Laser Science (LS) 2014, in Tucson, Arizona, 19–23 October 2014. We are grateful for the help of our colleagues and technical program committee members, Julian Sweet, King-Chuen Lin, Jerry Moloney, Brian Anderson, Andy Kung, Joshua Hendrickson, Elohim Chavez, and Stephan Koch, in organizing a broad range of topics in physics, biology and chemistry.

This year's program includes many of the areas at the forefront of laser science that are customarily found at the annual DLS meeting, plus topics associated with nano-opto-mechanics, ultrafast x-rays from XFEL sources, chemical dynamics with ultrafast lasers, and quantum optics. We have collaborated with our colleagues in The Optical Society to coordinate schedules to encourage your intellectual wanderings between DLS and OSA sessions.

In addition to an outstanding technical program, there are many exciting special symposia and events scheduled for the meeting this year. Special attention is appropriate for the Symposium on Undergraduate Research on Monday afternoon, which showcases the work of some of our youngest scientists. The Symposium will feature a special poster session to present the work of selected undergraduate researchers.

Jeff Kimble, *California Inst. of Technology, USA*, the LS plenary speaker, will speak on Atom-Light Interactions in Photonic Crystals at the Plenary Session and Awards Ceremony, Monday, 20 October, 08:00 to 12:00. Mordechai Segev, *Technion – Israel Inst. of Technology, Israel,* winner of the APS 2014 Arthur L. Schawlow Prize in Laser Science, will also give his address. They will be joined by the FiO plenary speaker and the recipient of the OSA 2014 Frederic Ives Medal/Jarus W. Quinn Prize.

The technical sessions for the Laser Science meeting are organized around several broad themes: Photonic Crystals: Fundamentals and Applications; Optical and Laser-Based Approaches in Chemical and Biological Sensing; Filamentation of

Ultrashort Intense Laser Pulses; Cold Atoms and Molecules – Exploring New Physics with Quantum Degenerate Gases; Attosecond EUV and X-ray Light Sources and Their Applicaionts; Innovative Resonator-Emitter Coupled Systems; Quantum Information with Photons; and Semiconductor Nanooptics. Also of special note is a symposium on the 50th Anniversary of Optical Sciences (Sunday, 19 October, 16:00–18:30).

Our DLS business meeting will be held Tuesday, 21 October from 18:00 to 19:00 in the Tucson Ballroom, Salon D. The Laser Science banquet will be Tuesday evening, following the business meeting, in the Signature Grill Restaurant, Outdoor Patio – JW Marriott Tucson Starr Pass Resort from 19:00 to 21:00.

We welcome you to the Laser Science 2014 Meeting and encourage you to take full advantage of this year's technical and poster sessions, symposia, and plenary lectures, as well as an exhibit hall showcasing leading suppliers to the laser science community.

Enjoy!

Galina Khitrova Conference General Chair Univ. of Arizona, USA

Cheuk-Yiu Ng Conference Program Chair Univ. of California Davis, USA

General Information

Conference Services

Registration

Arizona Ballroom Foyer

Registration Hours

Sunday, 19 October	12:00–18:30
Monday, 20 October	07:00–18:00
Tuesday, 21 October	07:00–17:30
Wednesday, 22 October	07:30–18:00
Thursday, 23 October	07:30–18:00

Speaker Preparation Room

San Luis 2

Speakers and presenters are encouraged to stop by the Speaker Preparation Room to test their computers and presentations prior to their session. The room will be equipped with LCD projectors and screens. Computers will be available to test presentations.

Speaker Preparation Hours

Monday, 20 October	12:00–18:00
Tuesday, 21 October	07:00–17:30
Wednesday, 22 October	07:30–18:00
Thursday, 23 October	07:30–16:00

Press Room

Executive Boardroom 2

A staffed press room is available for credentialed members of the media. Badges for pre-registered reporters and reporter registration are in the press room along with press kits, internet connectivity and printer, quiet work space and conference information.

Press Room Hours

Sunday, 19 October	12:00–16:00
Monday, 20 October	07:30–18:00
Tuesday, 21 October	07:30–18:00
Wednesday, 22 October	07:30–18:00
Thursday, 23 October	07:30–12:00

E-Center

Tucson Ballroom Foyer

The E-Center, offering free internet connectivity, will be open Sunday through Thursday during registration hours.

UPS Store (Business Center)

Monday through Thursday: 07:00–18:00 Friday: 07:00–17:00 Saturday and Sunday: 08:00–15:00 +1 520.791.6200

The UPS Store at JW Marriott Tucson Starr Pass is a full service business center offering a full range of services including printing (black & white, color), scanning, fax and email transmission, packaging and shipping, finishing services (laminating, binding), and wide format printing and laminating (posters, banners).

Lost and Found

For Lost and Found please check first at the registration counter in the Arizona Ballroom Foyer. **Please put your name on all conference materials (including your Conference Program), as they will only be replaced for a fee.**

Special Needs

If you have a disability and require special accommodations in order to fully participate in this conference, please contact Conference Management at the registration desk. Your specific needs will be addressed.

Exhibit Hall

Tuesday, 21 October, 10:00–16:00 and Wednesday, 22 October, 10:00–14:00 *Arizona Ballroom, Salons 1-7*

The FiO Exhibit is open to all registered attendees. Visit a diverse group of companies representing every facet of the optics and photonics industries. For more information, see page 21.

Wifi Access Instructions

To access the complimentary wifi services during the FiO/LS Conference, use the following information to log in. If you require more detailed instructions, a step-by-step access guide is available at the FiO registration desk.

SSID: FIO2014 Password: optical2014

Looking for Lunch? Restaurants, Food Trucks and Cash Concessions!

In addition to four on property restaurants we have planned some new exciting lunch options. On Monday, 20 October and Tuesday, 21 October a variety of food trucks will be available during lunch hours (*cash and credit accepted*). On Wednesday, 22 October, cash concessions will be available in the exhibit hall from 12:00–13:30, visit with the exhibitors and poster session presenters and enjoy lunch (*cash only please*). Cash concessions will also be available on Thursday, 23 October during lunch hours, set on the Ania Terrace. Please visit the conference mobile app for more information.

First Aid and Emergency Information

In the event of an emergency at the JW Marriott Tucson Starr Pass hotel go to the nearest house phone and dial "0", advise the operator of your identity and location so they can better assist you.

If you have an emergency and cannot wait at the phone dial "911" and leave the phone off the hook in that area. Please only use 911 in the event of a serious situation.

If you have a Security concerns for yourself or others in your group please contact the operator at "0" and you will be put in touch with the Loss Prevention Department.

Medical Facilities

Carondelet St. Mary's Hospital

1601 W St Mary's Rd. Tucson, AZ 85745 +1 520.872.3000 Available 24 hours a day Travel time from the hotel is about 5 minutes

University of Arizona Medical Center

1501 N Campbell Ave Tucson, AZ 85724 +1 520.694.0111 Available 24 hours a day Travel time from the hotel is about 15 minutes

Walgreens Take Care Clinic

2180 W. Grant Road Tucson, AZ 85745 +1 520.620.1088 Monday and Thursday: 08:00–17:30 Tuesday, Wednesday and Friday: 08:00–19:30 Saturday and Sunday: 09:30–17:00 Travel time from the hotel is about 11 minutes

Next Care Urgent Care

4280 N. Oracle Rd., Suite 100 Tucson, AZ 85705 +1 888.381.4858 Monday through Sunday: 08:00–24:00 Travel time from the hotel is about 20 minutes

Sponsoring Society Membership Booths

Arizona Ballroom Foyer

Catch up on the latest product and service offerings of the meetings' sponsoring societies, APS and OSA, by visiting their membership booths.

> Join or Renew at FiO. Save 50% on Dues.

Learn More at the OSA Booth.

Join or renew at FiO, and you'll receive a 50% discount on your annual dues. If your membership isn't due to expire soon, you can still renew now and extend your membership for another year.

This offer is available through 23 October 2014, and can only be transacted at the OSA booth. The discount does not apply on multi-year, lifetime, or student memberships or members eligible for the Developing Nations rate.

Stay Connected

Download the FiO/LS Mobile Application

Frontiers in Optics/Laser Science 2014 (FiO/LS 2014) has gone mobile again this year using CrowdCompass! We strongly encourage you to download our mobile guide to enhance your experience at FiO/LS 2014. You'll be able to plan your day with a personalized schedule and browse exhibitors, maps and general show info.

The app is compatible with iPhone, iPad, iPod Touch and Android devices.

To get the guide, choose one of the methods below:

- 1. Visit http://www.osa.org/fioapp to download the application.
- 2. Scan the following image with your mobile phone (QR-Code reader required, e.g. 'Red Laser', 'Barcode Scanner')

Technical Digest and Postdeadline Papers

Technical attendees have EARLY (at least one week prior to the meeting) and FREE continuous online access to the FiO/LS 2014 technical digest and Postdeadline papers. These 1-2-page summaries of tutorial, invited, and accepted contributed papers can be downloaded individually or by downloading daily .zip files. (.zip files are available for 60 days.)

- 1. Visit the conference website at http://www.frontiersinoptics.com
- 2. Select the purple "Download Digest Papers" button on the right side of the web page

3. Log in using your email address and password used for registration. You will be directed to the conference page where you will see the .zip file links at the top of the page. [Please note: if you are logged in successfully, you will see your name in the upper right-hand corner.]

Access is limited to Full Technical Attendees only. If you need assistance with your login information, please use the "forgot password" utility or "Contact Help" link.

Join the Social Conversation at FiO/LS 2014!

We will be providing the latest updates throughout the conference using Twitter. Do you have a twitter handle? Join in the conversation and you could win a gift card for up to \$100! Follow @Opticalsociety on Twitter. Tweet about your conference experience using #FiO14 in your tweets. Stop by the OSA booth for more details.

Young Professional Bloggers

Watch for OSA's own Young Professional and Student Bloggers reporting on conference events and their unique experiences at FiO! The Luminous Insights Blog posts will be shared via the Conference Twitter stream #FiO14

Program Playback: Recorded Content

We are delighted to announce we are continuing to offer this valuable enhancement free to FiO/LS full technical registrants. More than 40% of the sessions at this year's conference are being digitally captured for on-demand viewing. The pre-selected content includes the plenary presentations, selected hot topics representing the full breadth of the FiO program. Session content will be available for on-demand viewing until **23 December 2014.** All captured session content will be live for viewing within forty-eight hours of being recorded. Just look for the **O** symbol in the Agenda of Sessions to easily identify the presentations being captured.

- 1. Visit the conference website at www.frontiersinoptics.com
- 2. Select the purple "View Presentations" button on the right side of the web page
- 3. Log in using your email address and password used for registration. You will be directed to the conference page where you will see the .zip file links at the top of the page. [Please note: if you are logged in successfully, you will see your name in the upper right-hand corner.]

Access to the recorded sessions is limited to full technical attendees only.

Poster Presentation PDFs

Authors presenting posters have the option to submit the PDF of their poster, which will be attached to their papers in Optics InfoBase. If submitted, poster PDFs will be available about three weeks after the conference end date.

Not Mobile?

Be sure to check these printed resources to find program updates.

Conference Program Update Sheet

All technical program changes will be communicated in the onsite Conference Program Update Sheet. All attendees will receive this information with your onsite registration materials and we encourage you to review it carefully to stay informed on changes to the program.

Exhibit Buyers' Guide

The Exhibit Buyers' Guide is composed of descriptions and contact information for exhibiting companies at this year's conference, and exhibit hall activities. Guides will be provided to every FiO/LS attendee as part of registration. All exhibitor information changes will be communicated in the FiO/LS mobile application. We encourage you to review the mobile application carefully to stay informed of changes to the program.

Program Updates Board

Onsite Program changes will be posted on an update board located at the registration desk. Check daily for new information.

2015 OSA Optics and Photonics Topical Meetings and Congresses			
Fourier Transform Spectroscopy (FTS)	1 – 4 March Lake Arrowhead, California, USA osa.org/fts	4 November 2014	
Hyperspectral Imaging and Sounding of the Environment (HISE)	1 – 4 March Lake Arrowhead, California, USA osa.org/hise	4 November 2014	
Bio-Optics: Design and Application (BODA) Novel Techniques in Microscopy (NTM) Optical Molecular Probes, Imaging and Drug Delivery (OMP) Optical Trapping Applications (OTA) Optics and the Brain (BRAIN)	Optics in the Life Sciences Congress 12 – 15 April Vancouver, Canada osa.org/lifesciencesOPC	13 January 2015	
Digital Holography & 3-D Imaging (DH)	osa.org/dh 24 – 28 May Shanghai, China	4 February 2015	
Adaptive Optics: Methods, Analysis and Applications (AO) Application of Lasers for Sensing & Free Space Communication (LS&C) Applied Industrial Optics; Spectroscopy, Imaging & Metrology (AIO) Computational Optical Sensing and Imaging (COSI) Freeform Optics (Freeform) Imaging Systems and Applications (IS) Propagation through and Characterization of Distributed Volume Turbulence (pcDVT)	Imaging and Applied Optics Congress osa.org/imagingOPC 7 – 11 June Washington, DC USA	18 February 2015	
Integrated Photonics Research, Silicon and Nano Photonics (IPR) Novel Optical Materials and Applications (NOMA) Optical Sensors (Sensors) Photonics Networks and Devices (Networks) Signal Processing in Photonics Communications (SPPCom)	Advanced Photonics Congress osa.org/photonicsOPC 27 June – 1 July Boston, Massachusetts, USA	10 March 2015	
Nonlinear Optics (NLO)	osa.org/nlo 26 – 31 July Kauai, Hawaii	7 April 2015	
Advanced Solid State Lasers (ASSL) Mid-Infrared Coherence Sources (MICS)	The Laser Congress November Germany osa.org/lc	July 2015	
Optical Nanostructures and Advanced Materials for Photovoltaics (PV) Optics and Photonics for Energy & the Environment (E2) Optics for Solar Energy (SOLAR) Solid-State and Organic Lighting (SOLED)	Light, Energy and the Environment Congress December Suzhou, China osa.org/energyOPC	September 2015	

Awards Ceremony and Conference Plenary Session

Monday, 20 October, 08:00–12:00 Arizona Ballroom, Salons 1-6

Join your colleagues to recognize recent OSA and APS/Division of Laser Science award and honor recipients. The session includes the Ives Medal Presentation, the Schawlow Prize Lecture and two plenary presentations.

The order of events:

Welcome

Remarks by Congressman Ron Barber, Arizona's 2nd Congressional District

OSA Award and Honor Presentations

International Year of Light, Philip Russell

Ives Medal Lecture – A Petahertz Oscilloscope – All Optical Measurement in the Atto Domain, Paul B. Corkum, National Research Council, Canada

Coffee Break

The College of Optical Sciences: Lighting the Future Video

APS/Division of Laser Science Award and Honor Presentations

Schawlow Prize Lecture— Photonic Topological Insulators, Mordechai Segev, Technion – Israel Inst. of Technology, Israel

Point-of-Care Diagnostics for Low-Resource Settings, Rebecca Richards-Kortum, *Rice Univ.*, USA

Atom-Light Interactions in Photonic Crystals, H. Jeff Kimble, *California Inst. of Technology, USA*

Closing Remarks

Plenary Presentations

Point-of-Care Diagnostics for Low-Resource Settings, Rebecca Richards-Kortum, *Rice Univ., USA*

Half the world's children live on less than \$2/day and do not have access to basic medical technologies. This talk will describe efforts to engineer appropriate highperformance, low-cost biophoton-

ics technologies to meet health needs in low-resource settings.

Rebecca Richards-Kortum is the Stanley C. Moore Professor and Chair of Bioengineering at Rice Univ. After receiving a B.S. in Physics and Mathematics from the Univ. of Nebraska-Lincoln in 1985, she continued her graduate work at the Massachusetts Inst. of Technology, where she received an M.S. in Physics in 1987 and a Ph.D. in Medical Physics in 1990. She joined the faculty in Bioengineering at Rice Univ. in 2005. In addition to being named a Howard Hughes Medical Inst. Professor in 2002 and 2006, she was elected to the U.S. National Academy of Engineering in 2008.

Dr. Richards-Kortum's research group is developing imaging systems to enable better screening for oral, esophageal, and cervical cancer and their precursors at the point-of-care. More recently, her group has worked to integrate advances in nanotechnology and microfabrication to develop novel, low-cost sensors to detect infectious diseases at the point-of-care, including cryptosporidium, malaria, and HIV.

Atom-Light Interactions in Photonic Crystals, H. Jeff Kimble, California Inst. of Technology, USA

New paradigms for strong atomphoton interactions would emerge by trapping arrays of atoms in one- and two-dimensional photonic crystals. Bringing this future to fruition requires the creation of

an interdisciplinary "toolkit" for the control, manipulation, and interaction of atoms and photons with a complexity and scalability not currently possible.

H. Jeff Kimble is the William L. Valentine Professor and Professor of Physics at the California Inst. of Technology, where he is Director of the Inst. for Quantum Information and Matter. He completed his undergraduate degree at Abilene Christian Univ. in 1971, and his doctoral degree in 1977 at the Univ. of Rochester. He spent two years as a staff scientist at the General Motors Research Laboratories. In 1979, he joined the faculty at the Univ. of Texas at Austin, where he eventually held the Sid Richardson Regents' Chair of Physics before moving to Caltech in 1989. Professor Kimble is a Fellow of the American Association for the Advancement of Science, the American Physical Society, and The Optical Society, and he is a member of the U.S. National Academy of Sciences.

APS Arthur L. Schawlow Prize and Lecture

The Schawlow Prize recognizes outstanding contributions to basic research that uses lasers to advance our knowledge of the fundamental physical properties of materials and their interaction with light. The Division of Laser Science of the American Physical Society will award the 2014 Arthur L. Schawlow Prize in Laser Science to **Mordechai Segev** for groundbreaking contributions to the study of light-matter interactions, in particular the discovery of optical spatial solitons in photorefractive media, for milestone contributions to nonlinear waves in photonic lattices, and for the observation of Anderson localization of light.

Photonic Topological Insulators, Mordechai Segev, Technion – IsraelInst. of Technology, Israel

Photonic systems are naturally an excellent avenue to study fundamental concepts of waves' interactions, and many times lead to new discoveries. In this context,

the recent breakthroughs on photonic topological insulators will be discussed, with an emphasis on fundamental aspects that are universal to many waves systems in nature.

Mordechai (Moti) Segev is a Distinguished Univ. Professor and the Trudy and Norman Louis Professor of Physics at the Technion - Israel Inst. of Technology, Haifa, Israel. He received his B.Sc. and D.Sc. from the Technion, Israel, in 1985 and 1990, respectively. He spent one year at Caltech as a post-doctoral fellow followed by two years as a Senior Research Fellow. He joined Princeton in September of 1994 as an Assistant Professor, becoming an Associate Professor in 1997, and a Professor in 1999. In the summer of 1998, Segev went back to his home country, Israel, and joined the Technion, eventually resigning from Princeton in 2000. In 2009, he was appointed as Distinguished Univ. Professor - the highest rank at the Technion, currently held by only five other professors. Moti Segev is a Fellow of The Optical Society (1997), and the American Physical Society (2000). He has won several awards, among them the European Physics Society's Quantum Electronics Prize (2007), , and the OSA Max Born Award (2009)., On the national level, he won the 2008 Israeli Landau Prize, and in 2011 he was elected to the Israel Academy of Sciences and Humanities.

Frederic Ives Medal /Jarus W. Quinn Prize

Recognizing overall distinction in optics, the Frederic Ives Medal is the highest award of the Society. It was endowed in 1928 by Herbert E. Ives, a distinguished charter member and 1924-1925 OSA President, to honor his father, who was noted as the inventor of modern photoengraving and who made pioneering contributions to color photography, three-color process printing, and other branches of applied optics. The medalist is asked to present a plenary address at OSA's Annual Meeting. The prize is funded by the Jarus W. Quinn Ives Medal Endowment, raised by members at the time of Quinn's retirement in recognition of his 25 years of service as OSA's first Executive Director. This year's Frederic Ives Medal/Jarus W. Quinn Prize will be presented to Paul Corkum for outstanding contributions to the foundation of the fields of attosecond science, high-harmonic spectroscopy and molecular optics.

A Petahertz Oscilloscope – All Optical Measurement in the Atto Domain, Paul Corkum, National Research Council, Canada

A highly multiphoton process is hardly modified by a weak perturbing field. Yet, the perturbing field can impress a subtle imprint that we can use for measurement.

Applied to attosecond pulse generation, we can simultaneously measure the attosecond pulse and the time dependence of the perturbing field.

A Canadian originally from Saint John, New Brunswick, Paul Corkum is a Fellow of the Royal Society of London and a foreign member of both the U.S. and Austrian Academies of Sciences. An OSA Fellow, he has been awarded the King Faisal Prize for Science, the Harvey Prize for Science, the OSA Charles H. Townes Award, the IEEE Quantum Electronics Award, the Arthur L. Schawlow Prize of the American Physical Society (APS), and the Zewail Prize of the American Chemical Society.

Corkum received his Ph.D. from Lehigh Univ. in 1972 and joined the Canadian National Research Council in 1973. He introduced many concepts for how atoms and molecules interact with intense light pulses. From this work, he showed how atomic or molecular gases can be used to produce and measure attosecond pulses, as well as how a molecule can "photograph" itself. He currently directs the Joint Attosecond Science Laboratory in Ottawa and holds a Canada Research Chair in Attosecond Photonics at the Univ. of Ottawa.

The following Awards will be presented during the Plenary and Awards Ceremony:

APS/Division of Laser Science Fellowships Arthur L. Schawlow Prize OSA Fellowships **OSA Honorary Member** 2013 and 2014 Frederic Ives Medal/Jarus W. Quinn Prize Esther Hoffman Beller Medal Max Born Award Stephen D. Fanton Distinguished Service Award Michael S. Feld Biophotonics Award Paul F. Forman Team Engineering Excellence Award Robert E. Hopkins Leadership Award Edwin Land Medal Sang Soo Lee Award Emmett Leith Medal Adolph Lomb Medal William F. Meggers Award David Richardson Medal R. W. Wood Prize

APS/Division of Laser Science Awards and Honors

APS/Division of Laser Science Fellowships

Randy A. Bartels, Colorado State Univ., USA Daniel Mittleman, Rice Univ., USA Martin C. Richardson, Univ. of Central Florida, USA

Arthur L. Schawlow Prize

Mordechai Segev, Technion-Israel Inst. of Technology, Israel

OSA Awards and Honors

OSA Fellowships

Chen Yuan Dong, National Taiwan Univ., Taiwan Janice A. Hudgings, Pomona College, USA Alan A. Madej, National Research Council, Canada Jennifer C. Ricklin, Air Force Research Laboratory, USA

OSA Honorary Member

Stephen E. Harris, Stanford Univ., USA

2014 Frederic Ives Medal/Jarus W. Quinn Prize

Paul B. Corkum, Univ. of Ottawa and National Research Council, Canada

For outstanding contributions to the foundation of the fields of attosecond science, high-harmonic spectroscopy and molecular optics.

2013 Frederic Ives Medal/Jarus W. Quinn Prize

Alain Aspect, Institut d'Optique, École Polytechnique and CNRS, France

For carrying out pioneering research on photons and atoms, shedding light on the most intriguing quantum phenomena and prompting the development of the new field of quantum information.

Esther Hoffman Beller Medal

Shin-Tson Wu, *Univ. of Central Florida, USA* For his broad and significant impact to academia and industry in photonics education through mentoring, textbooks, publications, seminars and onsite training courses.

Max Born Award

Costas M. Soukoulis, Iowa State Univ. and Ames Laboratory, USA

For his creative and outstanding theoretical and experimental research in the fields of photonic crystals and left-handed metamaterials and for novel applications of these materials to manipulate electromagnetic radiation.

Stephen D. Fantone Distinguished Service Award

Anthony J. Campillo, *The Optical Society, USA* For sustained leadership, vision and outstanding dedication to the quality and impact of OSA publications.

Michael S. Feld Biophotonics Award

Rebecca Richards-Kortum, *Rice Univ., USA* For exceptional contributions to advancing the applications of optics in disease diagnosis and inspiring work in disseminating low-cost health technologies to the developing world.

Paul F. Forman Team Engineering Excellence Award

Intel Silicon Photonics Group, *Intel Corp., USA* For 12+ years of innovation in the research and development of a revolutionary 4x25G silicon photonics, fully integrated, optical transceiver that is designed to help change the way data centers are architected.

Robert E. Hopkins Leadership Award

Robert P. Breault, *Breault Research Organization, USA* For pioneering leadership in the formation of global optics industry clusters.

Edwin Land Medal (co-sponsored with IS&T)

Mathias Fink, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, France For seminal investigations of time reversal of ultrasonic waves with applications to imaging and therapy.

Sang Soo Lee Award (co-sponsored with the Optical Society of Korea)

Maria Garavaglia, Centro de Investigaciones Ópticas, Argentina

For his key role in the development of optics and photonics research and education in Argentina.

Emmett Leith Medal

Posthumous recognition of Adam Kozma for his seminal contributions to optical information processing of radar data and holographic memories.

Adolph Lomb Medal

Alexander Szameit, Friedrich-Schiller-Universität Jena, Germany

For groundbreaking contributions to linear and nonlinear light evolution in photonic lattices, and photonic simulations of quantum, solid state and relativistic phenomena.

William F. Meggers Award

François Biraben, *Laboratoire Kastler Brossel, France* For outstanding achievements in high resolution atomic spectroscopy and metrology of fundamental constants, leading to far-reaching tests of quantum electrodynamics.

David Richardson Medal

Jannick P. Rolland, *Univ. of Rochester, USA* For visionary contributions and leadership in optical design and engineering, enabling noninvasive, optical biopsy.

R. W. Wood Prize

Michael Bass, *Univ. of Central Florida, USA* For the discovery of optical rectification, which led to the development of very wide band terahertz wave sources.

OSA's awards and medals are endowed through the OSA Foundation. The OSA Foundation is proud to support this prestigious program and recognize outstanding contributions in optics and photonics. For more information about the OSA Foundation, please visit www.osa.org/foundation or contact staff at foundation@osa.org.

Awards and Special Recognitions

OSA Foundation Grant Recipients

The OSA Foundation benefits over 7,000 people a year. We inspire future optics innovators, support career development for optics students, recent graduates and young professionals, and recognize distinguished achievement in the field through the presentation of awards and honors.

We would like to congratulate our 2014 grant recipients. Through the following programs we have been able to provide over 30 grants to help students attending FiO. For more information on who we are and what we do, visit www.osa.org/Foundation.

Emil Wolf Outstanding Student Paper Competition

This competition recognizes the innovation, research excellence and presentation abilities of students presenting their work during FiO and honors Emil Wolf for his many contributions to science and the Optical Society. One winner is selected from each of the eight FiO subcommittees. Winners receive a complimentary OSA student membership, an award stipend of \$300 USD and an award certificate.

Congratulations to our finalists competing at FiO:

FiO 1: Optical Design and Instrumentation

Giovanni Milione, CUNY City College, USA Christopher Edwards, Univ. of Illinois at Urbana-Champaign, USA Dustin Moore, Univ. of Rochester, USA

FiO 2: Optical Sciences

Marie Antier, Thales Research & Technology, USA Elad Schleifer, Hebrew Univ. of Jerusalem, Israel Rory Speirs, Univ. of Melbourne, Australia Scott Wandel, Penn State Univ., USA

FiO 3: Optics in Biology and Medicine

Jessica Dobbs, Rice Univ., USA Amy Shah, Vanderbilt Univ., USA Wonju Lee, Yonsei Univ., South Korea

FiO 4: Optics in Information Processing

Yuecheng Shen, Washington Univ. in St. Louis, USA Chien-Hung Lu, Princeton Univ., USA Mohammad Mirhosseini, Univ. of Rochester, USA

FiO 5: Fiber Optics and Optical Communications

Lucien Mandeng, Universite de Yaounde I, Cameroon Yamile Cardona Maya, Universidad Nacional de Colombia, Colombia Yuhong Yao, Univ. of Rochester, USA

FiO 6: Integrated Photonics

Kenneth Goodfellow, Univ. of Rochester, USA Daniel Bachman, Univ. of Alberta, Canada

FiO 7: Quantum Electronics Ogaga Odele, *Purdue Univ., USA* Hisashi Ogawa, *Univ. of Tokyo, Japan*

FiO 8: Vision and Color Maria Vinas, Instituto De Optica (CSIC), Spain

Incubic/Milton Chang Travel Grant

Funded by an endowment from Milton and Rosalind Chang, this program provides 10 grants of \$500 USD each to enable students who present papers to travel to the Frontiers in Optics. Grants are awarded to the presenter and usually the first author of the paper. Congratulations to the 2014 Incubic/Milton Chang Travel Grant Recipients:

Anderson Amaral, Universidade Federal de Pernambuco, Brazil

Li Chen, Ohio State University, USA

Vala Fathipour, Northwestern University, USA

Manuel Marques, University of Kent, UK

Giovanni Milione, CUNY City College, USA

Jelena Notaros, University of Colorado Boulder, USA

Jungwook Paek, Iowa State University, USA

Amy Shah, Vanderbilt University, USA

Caio Bruno Wetterich, Universidade de Sao Paulo, Brazil

Xiaorui Zheng, Swinburne University of Technology, Australia

Jean Bennett Memorial Student Travel Grant

Established in 2008, in memory of Jean M. Bennett, a highly decorated research physicist who was recognized for her contributions to the studies of optical surfaces and served as OSA's first female president, this \$1,000 USD grant is awarded to a student presenting their work at FiO. This competition is administered by the OSA Foundation and is made possible through the generous support of Nanoptek Corporation, the Pennsylvania State Univ. Department of Physics and individual contributors.

Congratulations to our 2014 grant recipient:

Christopher Edwards, University of Illinois at Urbana-Champaign, USA

12

OSA Foundation Student Travel Grants

The OSA Foundation is pleased to provide travel support to help students from developing nations attend FiO. Each grant recipient receives \$1,500 USD to offset costs associated with traveling to the conference.

Congratulations to our 2014 grant recipients:

Romita Chaudhuri, Indian Institute of Technology, Madras, India

Wen Ting Hsieh, National Taiwan University, Taiwan

Nithyanandan Kanagaraj, Pondihcerry University, India

Jian Li, Beijing University of Posts and Telecommunications, China

Lucien Mandeng, Universite de Yaounde I, France

Yamile Cardona Maya, Universidad Nacional de Colombia, Columbia

Vladimir Novikov, M. V. Lomonosov Moscow State University, Russia

Nidhi Paliwal, Indian Institute of Technology Bombay, India

Sergey Svyakhovskiy, M. V. Lomonosov Moscow State University, Russia

Tingyu Xue, Harbin Institute of Technology, China

You can help to inspire and support the next generation of science and engineering innovators by making a donation to the OSA Foundation. For a limited time, all donations are matched 100% by the Optical Society—so your gift has twice the impact. To learn more and to make a donation online, visit www.osa.org/ Foundation, or stop by the OSA booth.

DLS Award for Outstanding Doctoral Dissertation in Laser Science

This award was established in 2013 by the American Physical Society (APS) Division of Laser Science (DLS). Its purpose is to recognize doctoral research in the Laser Science area and to encourage effective written and oral presentation of research results. The award consists of \$1,000 USD and a certificate citing the contribution made by the recipient. The finalists will present their work at a special session of the Laser Science conference on Monday, 20 October from 16:00–18:00 in Tucson Ballroom Salon B. The winner will be announced during the Laser Science Banquet on Tuesday, 21 October from 19:00–21:00.

OSA Best Poster Presentation Prize

The Optical Society will be offering a prize for Best Poster Presentations. Presentations will be judged onsite and the winner will be announced at the conclusion of the conference and will receive a free conference registration to FiO/LS 2015.

<section-header><image><image><image><image><image><text>

Special Symposia

Symposium on the 50th Anniversary of Optical Sciences

Sunday, 19 October, 16:00–18:30 Arizona Ballroom, Salons 1-6

Organizer: Tom Koch, Univ. of Arizona, USA

This 50th Anniversary Symposium will include a brief tour through the history of the College of Optical Sciences at the Univ. of Arizona, leading to talks that capture how the seeds planted 50 years ago by Aden Meinel have blossomed into today's vibrant collection of research endeavors.

Welcoming remarks will be given by the **Honorable Jonathan Rothschild**, Mayor of the City of Tucson (Invited and Scheduled to attend).

Invited Speakers:

Image Science at OSC, Harrison H. Barrett; Univ. of Arizona, USA

Biomedical Optics at OSC, Jennifer Barton; Univ. of Arizona, USA

Fabrication & Metrology of Large Optics at OSC, Jim Burge; Univ. of Arizona, USA

Atoms and Photons: One Perspective on Quantum Optics at the College of Optical Sciences, Poul Jessen; Univ. of Arizona, USA

Semiconductor Physics at the Optical Sciences Center, Stephan Koch; Philipps-Universitat Marburg, Germany

The Force Law of Classical Electrodynamics: Lorentz versus Einstein and Laub, Masud Mansuripur; *Univ. of Arizona, USA*

Photonics at OSC, Nasser Peyghambarian; *Univ. of Arizona, USA*

Laser Science Symposium on Undergraduate Research

Monday, 20 October, 12:00–18:00 Tucson Ballroom, Salon E

Organizer: Harold Metcalf, Stony Brook Univ., USA

This special DLS annual symposium started in 2001 and has rapidly become one of the most successful DLS traditions. During the past several years the number of undergraduates presenting papers has grown from only 10 to more than 40, and the talks have been of outstanding quality, some absolutely stellar. Last year's posters were outstanding as well, and generated a great deal of lively interest and on-the-spot discussion. This year's symposium will consist of afternoon poster and oral sessions. The event provides an opportunity for some of the student members of our community, who are already among the finest young scientists to be found anywhere, to present their work before an audience of their peers as well as the larger optics community.

For speaker information see the Symposium on Undergraduate Research program in your registration bag.

OSA/APS congratulates the University of Arizona College of Optical Sciences on its 50th Anniversary

Symposium on Translational Biophotonics – Focus on Cancer

Monday, 20 October, 13:30–15:30 *Tucson Ballroom, Salon A*

Organizers: Melissa Skala, Vanderbilt Univ., USA; Bernard Choi, Univ. of California, Irivine, USA and Nozomi Nishimura, Cornell Univ., USA

Optical tools have great potential for innovation in pathology and diagnostics. New imaging modalities, contrast mechanisms and design improvements could enable novel ways of diagnosing, treating and monitoring cancer. In addition, optical technologies are entering the operating room and clinic as in situ diagnostics. As research tools, optical technologies are enabling the measurement of function such as metabolism or tissue perfusion and new developments make it possible to use access, visualize and treat anatomy previously unreachable. Novel methods providing chemical information may also change how pathologists look at cancer. Optical technologies are attractive for probing cancer because they provide unique insight into tumor physiology, and are low cost platforms for clinical translation. This symposium will showcase promising optical technologies in cancer research and oncology that are at various stages of clinical translation.

Invited Speakers:

Knowledge of the Principles of Oxygen Transport in Solid Cancers Enables Translational Decisions, Mark Dewhirst; Duke Univ., USA

What Can We Learn About Cancer Therapy from Single Cell Tracking, Charles Lin; Massachusetts General Hospital, USA

Molecular and Metabolic Imaging of Tumors to inform Therapeutic Interventions, Narasimhan Rajaram; Duke Univ., USA

Preclinical and Clinical Chemotherapy Response Monitoring with Diffuse Optical Technologies, Darren Roblyer; Boston Univ., USA

Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard

Wednesday, 22 October, 08:00–11:00 Tucson Ballroom, Salon A

Organizer: Brian Vohnsen, Univ. College Dublin, Ireland

The first use of a ruby laser to destroy a retinal tumor was realized by Charles J. Campbell in 1961, but the clinical breakthrough on the ophthalmic use of lasers for photocoagulation to prevent retinal detachment was reported by Milton Flocks and Christian Zweng in 1964. In this symposium, historical highlights on the use of lasers in ophthalmology will be given alongside state-of-the-art in the current ophthalmic use of lasers and corresponding safety limits. This symposium consists of two sessions. See times and speakers below.

Invited Speakers:

The Limits of Human Vision, Josef Bille, Heidelberg Univ., Germany

Lasers in Retinal Imaging, Stephen A. Burns; Indiana Univ., USA

Laser Technologies Enhancing OCT Performance, Wolfgang Drexler; Medical Univ. Vienna, Austria

The ANSI 2014 Standard for Safe Use of Lasers, Francois Delori, Schepens Eye Research Inst., USA

Application of Second Harmonic Generation Imaging for Visualization of the Characteristics of Corneal Stromal Collagen in Normal and Diseased Eyes, Naoyuki Morishige; Yamaguchi Univ., Japan

Symposium on Laser Particle Acceleration and Novel Acceleration Methods

Wednesday, 22 October, 13:30–18:00 Arizona Ballroom, Salon 12

Organizer: Laszlo Veisz, Max-Planck-Institut fur Quantenoptik, Germany and Cameron Geddes, Lawrence Berkeley National Lab, USA

2014 is the tenth anniversary of the first generation of quasi-monoenergetic electron spectra from laser wakefield acceleration. This achievement has given a significant boost to the development of compact laser plasma acceleration as well as alternative laser-driven acceleration scenarios such as electron acceleration in vacuum by laser or THz fields producing high energies and ultra-short pulses. The rapid evolution of these sources has made them a competing alternative to conventional accelerators by extending their properties and opening up novel application fields from light sources to energy frontier physics. Contributions are sought that explore these laser-based electron accelerators.

Invited Speakers:

Laser Accelerator on a Chip (>300MeV/m): A Path to TeV Energy Scale Physics and Table Top Coherent X-rays, Robert Byer; Stanford Univ., USA

Multi-GeV Laser-plasma Electron Accelerators, Mike Downer; Univ. of Texas at Austin, USA

Development of a High Repetition Rate Laserplasma Accelerator for Application to Ultrafast Electron Diffraction, Jérôme Faure; LOA-ENSTA, France

Dielectric Laser Acceleration -- From the Proof-ofconcept Experiment with Non-relativistic Electrons to Future Applications, Peter Hommelhoff; Friedrich-Alexander-Universitat Erlangen, Germany

Optimized Photonic Structures for GV/M Laser Acceleration of Electrons, James Rosenzweig; Univ. of California, Los Angeles, USA **Electron Acceleration Experiments by Using a Density-tapered Capillary Plasma Source,** Hyong Suk; *GIST, Korea*

Multi-GeV Laser Plasma Accelerators Using Plasma Waveguides and Integration of Multiple Acceleration Modules, Joroen van Tilborg, *LBNL*, *USA*

Symposium on Radiation Reaction in Ultra-High Intensity Lasers

Thursday, 23 October, 08:00–15:45 Tucson Ballroom, Salon A

Organizers: Richard T. Hammond, US Army Research Office and Univ. of North Carolina Chapel Hill, USA and Natalia M. Litchinitser, Univ. at Buffalo, The State Univ. of New York, USA

By 1905 the problem of radiation reaction in electrodynamics appeared in Abraham's book on the theory of electricity. In 1938 Dirac derived his famous relativistic equation for the equation of motion with radiation reaction, but it gave the infamous unphysical runaway solutions. Landau and Lifshitz used a perturbative form of Dirac's equation that gave sensible results. Since then there have been a number of theories of radiation reaction and the equation of motion, but the physics community has not generally accepted any one approach as correct. Today, with laser intensities already surpassing 10^{22}W cm^{-2} and higher expected in the near future, radiation reaction is a pressing problem. This symposium hopes to bring theoreticians and experimentalists together to find ways to test various theories of radiation reaction. This symposium consists of two sessions. See times and speakers below.

Invited Speakers:

High Repetition Rate kJ-class Nanosecond to Femtosecond Lasers, Todd Ditmire; Univ. of Texas, Austin, USA

Radiation Reaction and the Quantum Langevin Equation, George Ford; Univ. of Michigan, USA

Probing Radiation-Reaction in the igh Acceleration Regime, Yaron Hadad; *Univ. of Arizona, USA*

Solid-Density Experiments for Laser-Based Thomson Scattering: Approaching the Radiation Dominated Regime, John Nees; Univ. of Michigan, USA

Tutorial: Review of the Ford-O'Connell Results on Radiation Reaction in Electrodynamics, Robert O'Connell; *Louisiana State Univ., USA* **Tutorial: Nonlinear Radiation Effects with Filaments** - **Inside and Outside,** Martin Richardson; Univ. of Central Florida, CREOL, USA

Radiation Reaction of Relativistic Electrons Scattered by Relativistic Intensity Light, Donald Umstadter; Univ. of Nebraska, Lincoln, USA

Radiation Reaction and Ultra-high Intensity Lasers, Sheldon Wu; Lawrence Livermore National Laboratory, USA

Special Events

Annual OSA Student Chapter Leadership Conference

Sunday, 19 October, 07:00–17:00 Tucson Ballroom, Salons E & F

The invitation-only Student Leadership Conference brings together OSA Student Chapter leaders from around the globe to network, present posters and learn about successful chapter management and the popular International OSA Network of Students (IONS). The program also features professional development presentations from esteemed leaders in the field.

Welcome Reception

Sunday, 19 October, 18:30–20:00 Ania Terrace

Complimentary to all Technical Conference Attendees: Get the FiO/LS 2014 meeting off to a great start by attending the welcome reception! Meet with colleagues from around the world. Light hors d'oeuvres will be served. Volunteers from the Tucson Amateur Astronomy Association will have telescopes set up for you to observe under the clear, dark skies of Tucson.

OSA Optical Communications Technical Group Networking Event

Monday, 20 October, 13:30–15:00 Arizona Ballroom Salon G

This networking event encourages members and non-members interested in optical communications to interact and exchange ideas and views. Please check the website and update sheet for updates on this event.

Meet OSA's Journal Editors

Monday, 20 October, 17:30–19:00 Ania Terrace

OSA's journal Editors invite you to join them for conversation and refreshments. The Editors welcome your questions, concerns and ideas for the journals, such as:

- What are best practices when submitting your manuscript?
- What constitutes a useful manuscript review?
- What criteria do journal editors look for in submitted manuscripts?
- How do you propose a Feature Issue topic for publication in an OSA Journal?
- Other topics of interest to you

Refreshments will be provided. All are welcome.

Minorities and Women in OSA (MWOSA) Networking Reception

Monday, 20 October, 17:30–19:00 Tucson Ballroom, Salons I-J

Women in Photonics: Working Together to Succeed, Dr. Jessie Rosenberg; IBM TJ Watson Research Center, USA

Dr. Jessie Rosenberg is a Research Staff Member at the IBM TJ Watson Research Center, where she focuses on developing silicon photonics technology integrated

with CMOS electronics for optical communication applications. She received a Ph.D. degree in Applied Physics from the California Inst. of Technology in 2010 at the age of 23, and was recently named to the Forbes 30 Under 30 list of innovators in science.

OSA Student Member Reception

Monday, 20 October, 19:00–22:00 Starr Canyon River, JW Marriott Tucson Starr Pass Resort

This reception is a fun event that encourages Student Members of OSA to meet, enjoy refreshments and have a good time! Note that membership status will be checked. ID is required. Must be 21 or over to drink.

OSA Environmental Sensing Technical Group Guest Speaker: AFOSR Program on Imaging and Beam Control Through Deep Turbulence

Monday, 20 October, 19:00–20:00 Arizona Ballroom Salon 11

Special Guest Speaker: Dr. Michael Roggemann

Biography: Dr. Michael C. Roggemann is a professor of electrical engineering at Michigan Tech. He is a world-renowned authority in the area of optical propagation through turbulence. He is coauthor of the book "Imaging

Through Turbulence" and has authored or coauthored over sixty journal articles and over fifty conference papers. Dr. Roggemann is a member of the IEEE, and is a fellow of both The Optical Society and SPIE. His present research interests include imaging and beam projection through atmospheric turbulence, optical remote-sensing system design and analysis, and signal and image processing.

Abstract: Deep turbulence arises when the combination of optical path length and turbulence strength lead to saturated log amplitude fluctuations in the log amplitude of the field at either the transmit or the receive end of an optical system working in the presence of turbulence. Our team combines both optical and meteorological modeling expertise as we are investigating both overcoming strong turbulence, and using meteorological modeling to help predict the best conditions for propagation. In this presentation we summarize our efforts and progress to date.

VIP Industry Leaders Networking Event: Connecting OSA Corporate Members and Young Professionals

Tuesday, 21 October, 08:00-09:30 Tucson Ballroom, Salon F

Includes a hot buffet breakfast. RSVP Required.

Sponsored by

This session brings together Industry Executives to share their business experience - from how they started their careers, lessons learned along the way, to using their degree in an executive position - with Young Professionals and Students. The program starts with informal networking during breakfast and then transitions into "speed meetings" - small, brief visits with 5-6 executives to discuss careers, industry trends or other career topics. Some participants include:

- Robert "Bob" Breault, Breault Research Organization, Inc., USA
- James Fisher, Newport Corporation, USA
- Thomas L. Koch, College of Optical Sciences, University of Arizona, USA
- Donald A. Pearson, II, TRIOPTICS USA/ Davidson Optronics/Wells Research, USA
- Stephen Schaffer, Evaporated Coatings, Inc., USA
- Andre Wong, JDSU, USA

Space is limited. Members of OSA's Young Professionals program will be given registration priority, but students and recent graduates are also welcome and encouraged to register.

On-site registration will be accepted pending availability. Please contact vipevents@osa.org if you would like to register.

To join the Young Professionals program, email yp@osa.org.

Poster Presentations

Tuesday, 21 October, 12:00-13:30 Wednesday, 22 October, 12:00-13:30 Arizona Ballroom, Salons 1-7

Poster presentations offer an effective way to communicate new research findings and provide a venue for lively and detailed discussion between presenters and interested viewers. Don't miss this opportunity to discuss current research one-on-one with the presenters. The Optical Society will be offering a prize for Best Poster Presentations. Presentations will be iudged onsite and the winner will be announced at the conclusion of the conference.

"Mission: IYL" OSA Student Chapter Competition

Tuesday, 21 October, 12:00-16:00; Winners announced at 14:30. Arizona Ballroom, Salons 1-7

OSA challenges student chapters to showcase their best ideas for youth education outreach at the annual meeting. This year's competition is Mission: IYL. For a chance to win a \$500 USD first prize or \$250 USD second prize, chapters have been challenged to create optical demonstrations for children that connect with the mission of the International Year of Light to improve public understanding of how light affects our daily lives. These youth education demos should be easy to recreate in all parts of the world, so chapters must demonstrate properties of light using at least one of three simple household items: food coloring, compact discs and/or slinkies. Volunteer judges will rate chapters on effectiveness, creativity, presentation and supplies. The rules and entry form are available at frontiersinoptics.com/missioniyl.

All FiO/LS attendees are welcome to stop by and join in the fun!

OSA Fellow Members Lunch

Tuesday, 21 October, 12:00-14:00 Tucson Ballroom, Salons G-I

Join your colleagues at the OSA Fellow Member Lunch and Program featuring Andre Wong from JDSU, who will present on their innovative light source used in 3D sensing technology. This technology enables interactions with devices naturally using bodies, gestures, eyes or voice and is used in gaming. Hear about this and other promising applications of 3D sensing technology during the program. JDSU is the corporate contest winner of the OSA Enabled by Optics Contest, which raises public awareness about the role optics and photonics plays as a key enabler of the technologies that improve daily life worldwide.

If you did not RSVP, you may ask if space is still available at the OSA Booth.

Meet the APS Journal Editors Tuesday, 21 October, 15:30–17:00

Ania Terrace

The Editors of the APS journals invite you to join them for conversation and light refreshments. The Editors will be available to answer questions, hear your ideas, and discuss any comments about the journals. All are welcome. We hope you will be able to join us.

OSA Annual Business Meeting

Tuesday, 21 October, 18:00–19:00 Arizona Ballroom, Salon 8

Learn more about OSA and join the OSA Board of Directors for the Society's annual business meeting. The 2013 activity reports will be presented and the results of the Board of Directors election will be announced.

APS Division of Laser Science Annual Business Meeting

Tuesday, 21 October, 18:00–19:00 Tucson Ballroom, Salon D

All members and interested parties are invited to attend the annual business meeting of the Division of Laser Science (DLS). The DLS officers will report on the activities of the past year and on plans for the future. Questions will be taken from the floor. This is your opportunity to help define the operations of the DLS and the LS Conference.

OSA Holography & Diffractive Optics Technical Group Networking Event

Tuesday, 21 October, 18:00–19:00 Arizona Ballroom, Salon 10

Come to this Technical Group meeting for a meet and greet, with refreshments served. There will be a 30 minute tutorial lecture on how to get started with digital holograms in your laboratory. The lecture will cover modern topics with spatial light modulators targeted to graduate students.

OSA Member Reception: The Scorchin' Sonoran

Tuesday, 21 October, 19:00–21:00 Tucson Ballroom, Salons E & F

OSA cordially invites **OSA Members** to a blazingly celebratory night amidst the Sonoran Desert. Meet up with friends and colleagues as you savor the flavors of the American Southwest. Tucson has a rich, tri-cultural heritage stemming from Native American, Hispanic and Old West traditions. Your evening is filled with a fusion of cuisine and culture from each group. Enjoy music, drinks and appetizers, and get an introduction to the tastes of Tucson and the sounds of the Southwest.

Please bring your conference registration badge or OSA Membership card; if you join OSA on-site, please bring your receipt. This event is complimentary and is for OSA Members. Not a member yet? Join today to attend this OSA Member event.

Laser Science Banquet

Tuesday, 21 October, 19:00–21:00 Signature Grill Restaurant, Outdoor Patio – JW Marriott Tucson Starr Pass Resort

Join your colleagues for the annual LS Banquet. Tickets are required for this event and can be purchased at registration for US \$70. There is a limited quantity of tickets and tickets must be purchased by 12:00 noon on Monday, 20 October.

OSA Members and Families: Arizona-Sonora Desert Museum Tour

Wednesday, 22 October, 08:30–12:30 Bus will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 08:30.

Sponsored by OSA Members, Family and Friends

OSA members and their families are invited to visit the Arizona-Sonora Desert Museum as guests of OSA. Ranked as the #9 museum in the world in 2013 by TripAdvisor.com, the Desert Museum interprets and showcases the Sonoran Desert region, widely recognized as the lushest desert on earth. Tour participants will enjoy a fusion experience: zoo, botanical garden, natural history museum, aquarium, art gallery and several live animal presentations, exhibited on 21 acres that include two miles of walking paths. Please visit the OSA Membership Booth before 12:00 on Tuesday, 21 October to see if space is still available for this event.

Science Educators' Day (EDAY)

Wednesday, 22 October, 17:00–20:00 Tucson Ballroom, Salon E

This annual event focuses on effective and innovative approaches to science education, with an emphasis on hands-on, interactive classroom lessons.

Teaching and Learning Science Literacy, Michael Raymer; Univ. of Oregon, USA

Michael Raymer is a physicist and Phillip H. Knight Professor of Liberal Arts and Sciences at the Univ. of Oregon. He was on the faculty at the Univ. of Rochester's Inst. of Optics before moving to

Oregon, where he co-founded the Univ.'s Oregon Center for Optics. His interest in teaching began as an undergraduate at the Univ. of California at Santa Cruz, where he co-instructed a beginning course in chemistry. Many years later he parlayed that experience into the founding of the UO's Science Literacy Program, which is funded by the Howard Hughes Medical Inst., and which reaches across the departments of physics, chemistry, biology, and geology. His interest in teaching science literacy led him to author a textbook, The Silicon Web: Physics for the Internet Age (Taylor & Francis, 2009), to accompany a course he teaches called The Physics Behind the Internet. His research is in quantum optics, lasers, and atomic and molecular physics. He pioneered the field of quantum state tomography, important in quantum information science. Prof. Raymer is a Fellow of the American Physical Society (APS), and a Fellow of The Optical Society (OSA). He is a past member of the Board of Directors of The Optical Society. He served as Associate Divisional Editor for Physical Review Letters, as a member of the Board of Editors, J. Modern Optics, and as Topical Editor of the J. Optical Society of America B.

Univ. of Arizona, Celebrating 50 Years of Optical Science at Old Tucson

Wednesday, 22 October, 18:00–22:00
Old Tucson, 201 S Kinney Rd., Tucson AZ
\$50 per person - Includes dinner/entertainment.
Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 18:00.

Enjoy a bang up time at the world famous Old Tucson in celebration of the Univ. of Arizona, College of Optical Sciences 50th Anniversary.

Built in 1938 by Columbia Pictures as a replica of 1860's Tucson for the movie *Arizona*, Old Tucson has been the backdrop to over 70 major motion pictures including ¡Three Amigos! (1986), Tombstone (1993) and is considered Southern Arizona's premier outdoor entertainment venue with a full array of live shows, thrilling stunts, Old West dramas, and saloon musicals!

You will be transported in air-conditioned comfort via motor coach between the JW Marriott Starr Pass Resort & Spa and Old Tucson. Cowboys will welcome you into the town square as you arrive for a cocktail reception followed by a delicious western buffet and delightful western entertainment. At the height of the evening, Dean Thomas Koch will introduce you to the groundbreaking research being conducted at the Univ. of Arizona's College of Optical Sciences and a brief history of our past, present and future.

OSA Applications of Visual Science Technical Group Networking Event

Wednesday, 22 October, 18:30–19:30 Arizona Ballroom, Salon A

This technical group is hosting a social gathering at the end of the last visual optics session on Wednesday, allowing members and non-members interested in visual sciences to interact and exchange ideas and views. Please check the website and update sheet for updates on this event.

FiO Postdeadline Paper Presentations

Thursday, 23 October, 10:30–12:00 See the Update Sheet in your registration bag for exact times and locations

The FiO 2014 Technical Program Committee accepted a limited number of postdeadline papers for presentation. The purpose of postdeadline sessions is to give participants the opportunity to hear new and significant material in rapidly advancing areas. Only those papers judged to be truly excellent and compelling in their timeliness were accepted.

Univ. of Arizona, College of Optical Sciences and Steward Observatory Mirror Lab Tour

Thursday, 23 October, 13:00-17:00

No additional fee. Transportation will be provided. Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 13:00. Closed-toe shoes required. Tours involve walking, climbing stairs and standing.

Tour College of Optical Sciences labs where research is being conducted in areas ranging from Bose Einstein condensates and quantum information and control, to biomedical imaging and 3D displays, to the future of internet communications technology. See the facilities where the largest optics on earth are being molded, ground, and polished for astronomical observatories world-wide. This includes the freeform 8.4m mirrors for the Giant Magellan Telescope that will form a single optical surface with an aperture of 24.5 meters, or 80 feet in diameter, and is scheduled to begin science operations at Las Campanas Peak in Chile in 2020.

Exhibit Information

Visit the Frontiers in Optics 2014 Exhibit in the **Arizona Ballroom, Salons 1-7** and get a glimpse of the latest optical innovations! The FiO 2014 exhibit floor will feature companies representing a broad range of the best products and applications in the optics and photonics industry. Don't miss this opportunity to learn about new products, find technical and business solutions and gain the most up-to-date market perspective of your industry.

There is no charge to attend the exhibit—it's open to all registered attendees!

Exhibit Hours

Tuesday, 21 October	10:00–16:00
Unopposed Exhibit-Only Time and PosterSession	12:00–13:30
Wednesday, 22 October	10:00–14:00
Unopposed Exhibit-Only Time and PosterSession	12:00–13:30

Exhibit Hall Coffee Breaks and Unopposed Exhibit-Only Times

Tuesday, 21 October	10:00–10:30 15:30–16:00
Wednesday, 22 October	10:00–10:30

Joint FiO/LS Poster Sessions

Arizona Ballroom, Salons 1-7

Poster presentations offer an effective way to communicate new research findings and provide an opportunity for lively and detailed discussion between presenters and interested viewers. Make sure to visit the poster sessions in the Exhibit Hall to see the more than 80 posters scheduled for presentation.

Tuesday, 21 October	12:00–13:30
Wednesday, 22 October	12:00–13:30

"Mission: IYL" Student Chapter Competition

Tuesday, 21 October, 12:00–16:00; Winners announced at 14:30. *Arizona Ballroom, Salons 1-7*

Each year, OSA Student Chapters create innovative demonstrations for youth education outreach and showcase them in the FiO/LS Expo. To prepare for the International Year of Light (IYL), the 2014 Student Chapter Competition known as Mission: IYL challenges chapters to create demonstrations that use at least one of the following items that are easy to obtain most places in the world: food coloring, compact discs and/or slinkies. Volunteer judges will rate chapters on effectiveness, creativity, presentation and supplies. The rules and entry form completed by participating chapters are available at frontiersinoptics.com/missioniyl. All FiO/LS attendees are welcome to stop by and see the creativity of OSA chapters!

Exhibitor Appreciation Reception

Tuesday, 21 October, 16:00–17:30 Arizona Ballroom, Salons 1-7

Exhibitors, finish up your first day and come relax and mingle with your fellow exhibitors. Join us in the exhibit hall immediately following the close of the show for some food and beverages sponsored by OSA Corporate Membership.

Join OSA and discover the benefits of Corporate Membership. OSA can help corporations optimize product development resources and reduce time to market by giving professionals access to quality information, quality interactions and premium opportunities for collaboration. Join today! Contact Regan Pickett at (202) 416-1474 or rpickett@osa.org.

On Wednesday, 22 October, cash concessions will be available in the exhibit hall from 12:00–13:30, visit with the exhibitors and poster session presenters and enjoy lunch (cash only please).

FiO 2014 Participating Companies: (as of 09/19/2014)

4D Technology Corporation AdValue Photonics, Inc. **AIP** Publishing American Elements American Physical Society (APS) Andover Corporation APPLIED IMAGE, Inc. Arizona Optics Industry Association Block Engineering Breault Research Organization Cambridge University Press Chroma Technology Corp. Diamond USA, Inc. Edmund Optics, Inc. Energetiq Technology, Inc. ESDI - Engineering Synthesis Design, Inc. Evaporated Coatings, Inc. Femtolasers, Inc.

Fianium Inc. Hamamatsu Corporation Heraeus Quartz America, LLC Imagine Optic Inrad Optics IOP Publishing Ltd. Isuzu Glass, Inc. Laser Focus World Material Research Society Menlo Systems, Inc. Nature Publishing Group Newport Corporation NKT Photonics Inc. NP Photonics Nufern **Optical Perspectives Group, LLC** Optimax Systems, Inc. Opto-Alignment Technology, Inc.

OptoSigma Corporation OSA Corporate Membership Photonics Media/Laurin Publishing Physics Today PI (Physik Instrumente) LP Ruda Cardinal Syntec Optics Taylor & Francis TDI International, Inc. Thorlabs Toptica Photonics, Inc. TRIOPTICS USA UltraFast Innovations University of Arizona, College of **Optical Sciences** Wordingham Technologies Zygo Corporation

FiO/LS Committee

Thanks to the technical program committee members! Your time and efforts are appreciated!

Frontiers in Optics 2014 Technical Program Committee

Frontiers in Optics Chairs

Alfred U'Ren, Instituto de Ciencias Nucleares, Mexico, General Chair
Adam Wax, Duke Univ., USA, General Chair
P. Scott Carney, Univ. of Illinois at Urbana-Champaign, USA, Program Chair
Urs Utzinger, Univ. of Arizona, USA, Program Chair

Frontiers in Optics Subcommittees

FiO 1: Optical Design and Instrumentation

Ronguang Liang, Univ. of Arizona, USA, Subcommittee Chair

Florian Bociort, TU Delf, Netherlands John Koshel, Univ. of Arizona, USA Byoungho Lee, Seoul National Univ., Korea Jannick Rolland, Univ. of Rochester, USA Kevin Rolland-Thompson, Synopsys, Inc., USA Din-Ping Tsai, National Taiwan Univ., Taiwan Qiwen Zhan, Univ. of Dayton, USA

FiO 2: Optical Sciences

Laszlo Veisz, Max Planck Inst. for Quantum Optics, Germany, **Subcommittee Chair** Selçuk Aktürk, Istanbul Technical Univ., Turkey Ian Coddington, National Inst. of Standards and Technology, USA Cameron Geddes, LBL, USA Igor Jovanovic, Penn State Univ., USA Carlos Lopez, Mariscal Naval Research Laboratory, USA Rodrigo Lopez-Martens, École Nationale Supérieure de Techniques Avancées, France Koichi Yamakawa, Japan Atomic Energy Agency, Japan

FiO 3: Optics in Biology and Medicine

Nozomi Nishimura, Cornell Univ., USA, Subcommittee Chair Steven Adie, Cornell Univ., USA Alvara Casas-Bedoya, Univ. of Sydney, Australia Bernard Choi, Univ. of California Irvine, USA Conor Evans, Massachusetts General Hospital, USA Aydogan Ozcan, Univ. of California Los Angeles, USA Sava Sakadzic, Harvard Medical School, USA Melissa Skala, Vanderbilt Univ., USA

FiO 4: Optics in Information Processing

Alvin Yeh, Texas A&M Univ., USA

Michael Gehm, *Duke Univ., USA*, **Subcommittee Chair**

Mark Anastasio, Washington Univ., USA Amit Ashok, Univ. of Arizona, USA Johannes Courtial, Univ. of Glasgow, UK Daniel Marks, Duke Univ., USA Amy Oldenburg, Univ. of North Carolina, USA Sapna Shroff, Ricoh Innovations, USA Michael Stenner, MITRE Corporation, USA Markus Testorf, Dartmouth Univ., USA Laura Waller, Univ. of California, Berkeley, USA

FiO 5: Fiber Optics and Optical Communications

John Marciante, Univ. of Rochester, USA, **Subcommittee Chair** John Ballato, Clemson Univ., USA Mikhail Brodsky, ATT Research, USA Iyad Dajani, Air Force Research Lab, USA Fabrizio Di Pasquale, Scuola Superiore Sant'Anna, Pisa, Italy Goëry Genty, Univ. of Tempere, Finland Morten Ibsen, Univ. of Southampton, UK Bill Kuo, Univ. of California San Diego, USA Thomas Murphy, Univ. of Maryland, USA Chongjin Xie, Alcatel-Lucent Labs, USA

FiO 6: Integrated Photonics

Ronald Reano, Ohio State Univ., USA, **Subcommittee** Chair Ivan Biaggio, Lehigh Univ., USA Long Chen, Bell Labs, Alcatel-Lucent, USA Nicholas X. Fang, Massachusetts Inst. of Technology, USA Wataru Nakagawa, Montana State Univ., USA Nicolae C. Panoiu, Univ. College London, UK Joyce Poon, Univ. of Toronto, Canada

Mahmoud Rasras, Bell Labs, Alcatel-Lucent, USA

FiO 7: Quantum Electronics

Alexander V. Sergienko, Boston Univ., USA, **Subcommittee Chair** Mo Li, Univ. of Minnesota, USA Cefe Lopez, Instituto de Ciencia de Materiales, Spain Alan Migdall, NIST, USA Jeremy O'Brien, Univ. of Bristol, UK Christine Silberhorn, Univ. of Padeborn, Germany Wolfgang Tittel, Univ. of Calgary, Canada Paolo Villoresi, Univ. of Padua, Italy

FiO 8: Vision and Color

Brian Vohnsen, Univ. College Dublin, Ireland, Subcommittee Chair

Stacey Choi, Ohio State Univ., USA Nathan Doble, Ohio State Univ., USA Adam Dubis, Univ. College London, UK Josua Fernandez, Univ. de Murcia, Spain Andrew Mehta, Univ. of Melbourne, Australia Jason Porter, Univ. of Houston, USA

Laser Science Program Committee

Laser Science Chairs

Galina Khitrova, College of Optical Sciences, Univ. of Arizona, USA, General Chair

Cheuk-Yiu Ng, Department of Chemistry, Univ. of California Davis, USA, **Program Chair**

Laser Science Session Organizers

- 1. Photonic Crystals: Fundamentals and Applications Julian Sweet, Wyle Laboratories, USA
- 2. Optical and Laser-Based Approaches in Chemical and Biological Sensing King-Chuen Lin, National Taiwan Univ., Taiwan
- 3. Filamentation of Ultrashort Intense Laser Pulses Jerry Moloney, Univ. of Arizona, USA
- 4. Cold Atoms and Molecules Exploring New Physics with Quantum Degenerate Gases Brian Anderson, Univ. of Arizona, College of Optical Sciences, USA
- 5. Attosecond EUV and X-ray Light Sources and Their Applications Andy Kung, Inst. of Atomic and Molecular Sciences, Taiwan
- 6. Innovative Resonator-Emitter Coupled Systems Joshua Hendrickson, AFRL (Wright-Patterson), USA
- 7. Quantum Information with Photons Elohim Chavez, Univ. of New Mexico, USA
- 8. Semiconductor Nanooptics Stephan Koch, Phillips-Universität Marburg, Germany

APS Division of Laser Science Executive Committee

Executive Committee Officers

Antoinette Taylor, Los Alamos Natl. Lab, USA, Chair John Fourkas, Univ. of Maryland-College Park, USA, Chair-Elect
Henry Kapteyn, Univ of Colorado Boulder, USA, Past Chair
Anne Kelley, Univ. of California at Merced, USA, Secretary-Treasurer
Anthony Johnson (01/11 - 12/14) Univ. of Maryland, Baltimore County, USA, Councilor
Amy Spivey, Univ of Puget Sound, USA, Newsletter Editor

Executive Committee Members-at-Large

Randy Bartels, Colorado State Univ., USA Gregory Engel, Univ. of Chicago, USA Richard Averitt, Boston Univ., USA Ralph Jimenez, Univ. of Colorado-Boulder, USA Kristan Corwin, Kansas State Univ., USA Albert Stolow, National Research Council, Canada

Agenda of Sessions - Sunday, 19 October

07:00-17:00	Annual OSA Student Chapter Leadership Conference (Invitation Only), Tucson Ballroom, Salons E & F			
12:00–18:30	30 Registration, Arizona Ballroom Foyer			
16:00–18:30	0 JS1A • Symposium on the 50th Anniversary of Optical Sciences, Arizona Ballroom, Salons 1-6 🕥			
18:30–20:00	Conference Welcome Reception, Ania Terrace			

Monday, 20 October

	Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	
07:00–18:00	Registration, Arizona Ballroom Foyer				
08:00–12:00	JM1A • Conference Plenary Session and Awards Ceremony, Arizona Ballroom, Salons 1-6 🕟				
09:40–10:00	Coffee Break, Tucson and Arizona Ballroom Foyer				
12:30–15:25	LM2A • Laser Science Symposium on Undergraduate Reseach Poster Session, Tucson Ballroom, Salon E				
13:30–15:00	OSA Optical Communication Technical Group Networking Event, Arizona Ballroom, Salon G				
13:30–15:30	FM3A • Silicon Photonics D	FM3B • Nonlinear Optics in Micro and Nano-Optical Structures I (ends at 17:45)	FM3C • Frequency Comb Generation in Optical Fibers and Their Applications	FM3D • Coherence, Interference, and Polarization I	
15:30–16:00		Coffee Break, Tucson an	d Arizona Ballroom Foyers		
16:00–18:00	FM4A • Integrated Nanophotonics D	FM4B • Nonlinear Optics in Micro and Nano-Optical Structures II 🔹	FM4C • Fiber Frequency Combs and Mode-Locked Lasers	FM4D • Coherence, Interference, and Polarization II	
17:30–19:00	Minorities and Women in OSA (MWOSA) Networking Reception, Tucson Ballroom, Salons I & J				
17:30–19:00	Meet OSA's Journal Editors, Ania Terrace				
19:00–20:00	Guest Speaker: AFOSR Program on Imaging and Beam Control Through Deep Turbulence, Arizona Ballroom, Salon 11				
19:00–22:00	OSA Student Member Reception, Starr Canyon River, JW Marriott Tucson Starr Pass Resort				
19:00–21:00	President's Reception (Invitation Only), Catalina Barbeque Co., located at Starr Pass Country Club, JW Marriott Tucson Starr Pass Resort				

Laser Science

ence

Joint

Arizona Ballroom	Tucson Ballroom	Tucson Ballroom	Tucson Ballroom	Tucson Ballroom
Salon 12	Salon A	Salon B	Salon C	Salon E
		Registration, Arizona Ballroom Foyer		
	JM1A • Conference Plenary	v Session and Awards Ceremony, Ariz	ona Ballroom, Salons 1-6 🜔	
	Coffe	e Break, Tucson and Arizona Ballroom	Foyer	
	LM2A • Laser Science Symposium	n on Undergraduate Reseach Poster	Session, Tucson Ballroom, Salon E	
	OSA Optical Communication	on Technical Group Networking Even	t, Arizona Ballroom, Salon G	
FM3E • Optical System Design for Information Optics (ends at 15:15)	FM3F • Symposium on Translational Biophotonics - Focus on Cancer D	LM3G • Semiconductor Nanooptics I	LM3H • Ultracold Gases I	LM3I • Laser Science Symposium on Undergraduate Research I (15:45–16:45)
	Coffe	e Break, Tucson and Arizona Ballroom	Foyers	
FM4E • Information Capacity of the Photon ((ends at 17:45)FM4F • Novel Methods for Tissue Imaging and Therapy (Maging and Therapy (LM4I • Laser Science Symposium on Undergraduate Research II (17:00–18:00)
	Minorities and Women in O	SA (MWOSA) Networking Reception,	Tucson Ballroom, Salons I & J	
Meet OSA's Journal Editors, Ania Terrace				
Guest Speaker: AFOSR Program on Imaging and Beam Control Through Deep Turbulence, Arizona Ballroom, Salon 11				
OSA Student Member Reception, Starr Canyon River, JW Marriott Tucson Starr Pass Resort				
President	s Reception (Invitation Only), Catalina	Barbeque Co., located at Starr Pass C	Country Club, JW Marriott Tucson Starr	Pass Resort

Agenda of Sessions – Tuesday, 21 October

	Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	
07:00–17:30	Registration, Arizona Ballroom Foyer				
08:00–09:30	VIP Industry Leaders Networking Event: Connecting Corporate Executives, Recent Graduates and Students, Tucson Ballroom, Salon F				
08:00–10:00	Tu1A • Integrated Duantum Optics I Image: Section				
10:00–10:30		Coffee Break and Unopposed Exhibit	Only Time, Arizona Ballroom, Salons 1-7		
10:00–16:00		Exhibit Open, Arizon	a Ballroom, Salons 1-7		
10:30–12:00	FTu2A • Integrated Quantum Optics II	FTu2D • Integrated Photonic Quantum Circuits			
12:00–13:30		Unopposed Exhibit Only Tim	e, Arizona Ballroom, Salons 1-7		
12:00–13:30		JTu3A • Joint Poster Session	I, Arizona Ballroom, Salons 1-7		
12:00–16:00	"Mission IYL" OSA Student Chapter Competition, Arizona Ballroom, Salons 1-7				
12:00–14:00		OSA Fellow Members Lunch	n, Tucson Ballroom, Salons G-I		
13:30–15:30	FTu4A • Quantum Communications Image: FTu4B • Optical Fiber Sensors II Image: Sensors IImage: S				
15:30–16:00	Coffee Break and Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7				
15:30–17:00		Meet the APS Journa	l Editors, Ania Terrace		
16:00–17:30	FTu5A • Quantum Electronics I 🔹	FTu5B • Optical Fiber Sensors III (ends at 17:15)	FTu5C • Coherence and Polarization I	FTu5D • Microresonators	
16:00–17:30		Exhibitor Appreciation Recepti	on, Arizona Ballroom, Salons 1-7		
18:00–19:00	APS Annual Business Meeting, Tucson Ballroom, Salon D				
18:00–19:00	OSA Annual Business Meeting, Arizona Ballroom, Salon 8				
18:00–19:00	OSA Holography & Diffractive Optics Technical Group Networking Event, Arizona Ballroom, Salon 10				
19:00-21:00		OSA Member Reception: The Scorchin	Sonoran, Tucson Ballroom, Salons E & F		
19:00-21:00	Laser So	cience Banquet, Signature Grill Restaurant,	Outdoor Patio, JW Marriott Tucson Starr Pa	iss Resort	

Key to Shading

Laser Science

Arizona Ballroom Salon 12	Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
		Registration, Arizona Ballroom Foyer		
VIP Industry	y Leaders Networking Event: Connec	cting Corporate Executives, Recent G	Graduates and Students, Tucson Ballr	oom, Salon F
FTu1E • Materials for Plasmonics O	FTu1F • Optical Trapping and Manipulation	FTu1G • General Optical Sciences I	LTu1H • Ultracold Gases III	LTu1l • Semiconductor Nanooptics II
	Coffee Break and U	nopposed Exhibit Only Time, Arizona	a Ballroom, Salons 1-7	
	Ex	hibit Open, Arizona Ballroom, Salons	1-7	
FTu2E • Parity-time Symmetry and Photonic Lattices FTu2F • General Optics in Biology and Medicine I FTu2G • General Optical Sciences II LTu2H • Attosecond Science I LTu2I • Quantum Information				
	Unopposed	d Exhibit Only Time, Arizona Ballroom	n, Salons 1-7	
	JTu3A • Jo	int Poster Session I, Arizona Ballroom	n, Salons 1-7	
	"Mission IYL" OSA S	tudent Chapter Competition, Arizona	a Ballroom, Salons 1-7	
	OSA Fello	w Members Lunch, Tucson Ballroom,	Salons G-I	
JTu4E • Novel Intense FTu4F • Fibers for Biomedical FTu4G • Relativistic Light Sources LTu4H • Resonators and LTu4I • Semiconductor Attosecond Sources I Applications Image: Construction of the second set of the second				LTu4I • Semiconductor Nanooptics III
Coffee Break and Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7				
	Me	eet the APS Journal Editors, Ania Terr	race	
FTu5E • Novel Image and Information Analysis Methods (ends at 17:15)	FTu5F • General Optics in Biology and Medicine II	JTu5G • Novel Intense Attosecond Sources II	LTu5H • Chemical and Biological Sensing I	LTu5I • Quantum Information II
Exhibitor Appreciation Reception, Arizona Ballroom, Salons 1-7				
APS Annual Business Meeting, Tucson Ballroom, Salon D				
OSA Annual Business Meeting, Arizona Ballroom, Salon 8				
OSA Holography & Diffractive Optics Technical Group Networking Event, Arizona Ballroom, Salon 10				
	OSA Member Recep	tion: The Scorchin' Sonoran, Tucson I	Ballroom, Salons E & F	
	Laser Science Banquet, Signatu	re Grill Restaurant, Outdoor Patio, JW	Marriott Tucson Starr Pass Resort	

Agenda of Sessions – Wednesday, 22 October

	Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	
07:30–18:00	Registration, Arizona Ballroom Foyer				
08:00–10:00	FW1A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning I 💽	FW1B • Photonic Crystal Cavities and Waveguides	FW1C • Quantum Optical Measurement and Quantum Technologies I	FW1D • Long Wavelength Mid- IR to THz Fiber Devices I	
08:30–12:30	OSA Members and Families: Arizona-Sonora Desert Museum Tour, Bus will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 08:30.				
10:00–10:30		Coffee Break and Unopposed Exhil	bit Time, Arizona Ballroom, Salons 1-7		
10:00-14:00		Exhibit Open, Arizor	na Ballroom, Salons 1-7		
10:30–12:00	FW2A • Imaging (ends at 11:30)	FW2B • Materials for Integrated Photonics	FW2C • Quantum Optical Measurement and Quantum Technologies II	FW2D • Long Wavelength Mid-IR to THz Fiber Devices II (ends at 11:45)	
12:00–13:30	Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7				
12:00–13:30		JW3A • Joint Poster Session	II, Arizona Ballroom, Salons 1-7		
13:30–15:30	FW4A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning II 💽	FW4B • Integrated Photonics D	FW4C • Quantum Optical Measurement and Quantum Technologies III	FW4D • Novel Fiber And Communications Devices (ends at 15:15)	
15:30–16:00		Coffee Break, Tucson ar	nd Arizona Ballroom Foyer		
16:00–18:00	FW5A • General Optical Design, Fabrication, Testing, and Instrumentation I	FW5B • Hybrid Integrated Photonics D	FW5C • Quantum Electronics II	FW5D • Enabling Technologies for Astrophotonics (ends at 18:15)	
17:00-20:00	OSA Science Educators' Day, Tucson Ballroom, Salon E				
18:00–22:00	University of Arizona, Celebrating 50 Years of Optical Science at Old Tucson, Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 18:00.				
18:30–19:30	OSA Applications of Visual Science Technical Group Networking Event, Arizona Ballroom, Salon A				

Laser Science

Arizona Ballroom Salon 12	Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
		Registration, Arizona Ballroom Foyer		
FW1E • Microscopy and OCT I 🔹	FW1F • Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard I	LW1G • Resonators and Photonic Crystals II	LW1H • Attosecond Science II	LW1I • Filamentation I
OSA Members and Famil	ies: Arizona-Sonora Desert Museum	Tour, Bus will depart from the Starr Cir	cle Entrance at the JW Marriott Tucsor	n Starr Pass Resort at 08:30.
	Coffee Break and	l Unopposed Exhibit Time, Arizona Ba	allroom, Salons 1-7	
	Ex	hibit Open, Arizona Ballroom, Salons	1-7	
FW2E • Coherence and Polarization II	FW2F • Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard II ((ends at 11:00)	FW2G • General Optics in Biology and Medicine III (ends at 11:45)	LW2H • Quantum Information III	LW2I • Solid State Optical Physics
	FW3F • Low-cost Ophthalmic Instrumentation and Imaging (starts at 11:00)			
	Unopposed	d Exhibit Only Time, Arizona Ballroom	n, Salons 1-7	
	JW3A • Jo	int Poster Session II, Arizona Ballroom	n, Salons 1-7	
FW4E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods I	FW4F • Ocular Aberrations and Wavefront Sensing (ends at 15:00)	FW4G • Microscopy and OCT II	LW4H • Resonators and Photonic Crystals III	LW4I • Filamentation II (ends at 15:15)
	Coffe	e Break, Tucson and Arizona Ballroom	Foyer	
FW5E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods II •	FW5F • Retinal Imaging and Analysis 🜔	FW5G • Frequency Combs in Novel Spectral Ranges	LW5H • Attosecond Science III (ends at 18:15)	LW51 • Chemical and Biological Sensing II (ends at 17:30)
OSA Science Educators' Day, Tucson Ballroom, Salon E				
University of Arizona, Celebrating 50 Years of Optical Science at Old Tucson, Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 18:00.				
OSA Applications of Visual Science Technical Group Networking Event, Arizona Ballroom, Salon A				

Agenda of Sessions – Thursday, 23 October

	Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11		
07:30–18:00	Registration, Arizona Ballroom Foyer					
08:00–10:00	FTh1A • General Optical Sciences III 🔹	FTh1B • Enabling Technologies for High Speed Optical Communications I 💽	FTh1C • Optics and Photonics of Disordered Systems I	FTh1D • Metamaterials		
10:00–10:30		Coffee Break, Tucson an	d Arizona Ballroom Foyers			
10:30-12:00	FTh2 • FiO Postdeadline Paper Sessions, Arizona Ballroom, Salons 8-9/Arizona Ballroom, Salons 11-12/Tucson Ballroom, Salons A-B					
12:00-13:30		Lunch Break (on your own)				
13:00–17:00	University of Arizona, College of Optical Sciences and Steward Observatory Mirror Lab Tour, Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 13:00.					
13:30–15:30	FTh3A • Coherent Combination of Laser BeamsFTh3B • Enabling Technologies for High Speed Optical Communications II		FTh3C • Optics and Photonics of Disordered Systems II	FTh3D • Beam Shaping and Enhanced Optical Transmission Plasmonics		
15:30–16:00	Coffee Break, Tucson and Arizona Ballroom Foyers					
16:00–18:00	FTh4A • General Optical Sciences IV	FTh4B • Enabling Technologies for High Speed Optical Communications III (ends at 17:45)	FTh4C • Quantum Electronics III (starts at 16:15)	FTh4D • Imaging, Coherence and Propagation (ends at 17:15)		

Key to Shading

Frontiers in Optics

Laser Science

Arizona Ballroom Salon 12	Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
		Registration, Arizona Ballroom Foyer	r	
FTh1E • Lab-on-a-chip and Optofluidics D	FTh1F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers I ((ends at 10:15)	FTh1G •General Optical Design, Fabrication, Testing, and Instrumentation II	LTh1H • Resonators and Photonic Crystals IV	LTh11 • Quantum States of Matter and Light (ends at 09:45)
	Coffe	e Break, Tucson and Arizona Ballroom	Foyers	
FTh2 • F	iO Postdeadline Paper Sessions, Ariz	ona Ballroom, Salons 8-9/Arizona Ballı	room, Salons 11-12/Tucson Ballroom, S	Salons A-B
		Lunch Break (on your own)		
	University of Arizona, Colle Busses will depart from the Sta	ge of Optical Sciences and Steward (rr Circle Entrance at the JW Marriott To	Observatory Mirror Lab Tour, Jucson Starr Pass Resort at 13:00.	
FTh3E • Plasmonics FTh3F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers II (ends at 15:45) FTh3G • General Optical Design, Fabrication, Testing, and Instrumentation III LTh3H • Filamentation III LTh3I • Chemical and Biological Sensing III				
Coffee Break, Tucson and Arizona Ballroom Foyers				
FTh4E • Optical Antennas and Plasmonic Waveguide Devices (ends at 17:45)		FTh4G • General Optical Design, Fabrication, Testing, and Instrumentation IV	LTh4H • Chemical and Biological Sensing IV (ends at 17:00)	LTh4I • Light Matter Interaction

The first letter of the code designates the meeting (For instance, F = Frontiers in Optics, L = Laser Science, J=Joint). The second element denotes the day of the week (Monday = M, Tuesday = Tu, Wednesday = W, Thursday = Th). The third element indicates the session series in that day (for instance, 1 would denote the first parallel sessions in that day). Each day begins with the letter A in the fourth element and continues alphabetically through a series of parallel sessions. The lettering then restarts with each new series. The number on the end of the code (separated from the session code with a period) signals the position of the talk within the session (first, second, third, etc.). For example, a presentation coded FW1A.4 indicates that this paper is part of the Frontiers in Optics Meeting and is being presented on Wednesday (W) in the first series of sessions (1), and is the first parallel session (A) in that series and the fourth paper (4) presented in that session.

Arizona Ballroom, Salons 1-6

JOINT FIO/LS

07:00–16:00 Annual OSA Student Chapter Leadership Conference (Invite Only), Tucson Ballroom E & F

12:00–18:30 Registration, Arizona Ballroom Foyer

16:00-18:30

JS1A • Symposium on the 50th Anniversary of Optical Sciences 🜔 Presider: Thomas L. Koch; Univ. of Arizona, USA

Welcoming remarks will be given by the Honorable Jonathan Rothschild, Mayor of Tucson

JS1A.1 • 16:20 Keynote 🜔

A Brief History of the College of Optical Sciences, James C. Wyant'; 'College of Optical Sciences, Univ. of Arizona, USA. This keynote presentation will discuss the history of the college of Optical Sciences at the Univ. of Arizona.

James C. Wyant is professor emeritus at the College of Optical Sciences at the University of Arizona, where he was Director (1999-2005), Dean (2005-2012), and a faculty member since 1974. He received a B.S. in physics from Case Western Reserve University and M.S. and Ph.D. in optics from the University of Rochester. He was a founder of the WYKO Corporation and served as its president and board chairman from 1984 to 1997 and he was a founder of the 4D Technology Corporation and currently serves as its board chairman. Wyant is a member of the National Academy of Engineering, a Fellow of OSA (The Optical Society), SPIE (International Society of Optics and Photonics), and the Optical Society of India, an honorary member of the Optical Society of Korea, and former editor-in-chief of the OSA journal Applied Optics. He was the 2010 president of OSA and the 1986 president of SPIE.

JS1A.2 • 16:45 Invited

Atoms and Photons: One Perspective on Quantum Optics at the College of Optical Sciences, Poul S. Jessen¹; ¹College of Optical Sciences, Univ. of Arizona, USA. Over the years quantum optics at the College of Optical Sciences has been shaped by theory and experiment alike. The modern era of atomic physics arrived in the 1990's, and has brought a variety of experiments including ultracold atoms, guantum information, and optical frequency metrology.

JS1A.3 • 17:00 Invited

The Force Law of Classical Electrodynamics: Lorentz versus Einstein and Laub, Masud Mansuripur¹; ¹College of Optical Sciences, Univ. of Arizona, USA. We discuss the advantages of the force law proposed by Einstein and Laub in 1908 over the standard force law of Lorentz. The Einstein-Laub law is consistent with Maxwell's equations, with the conservation laws, and with special relativity.

JS1A.4 • 17:15 Invited

Image Science at OSC, Harrison Barrett'; 'Univ. of Arizona, USA. This talk will describe the image science at the College of Optical Sciences at the University of Arizona.

JS1A.5 • 17:30 Invited

Biomedical Optics at OSC, Jennifer K. Barton¹; ¹Biomedical Engineering, Univ. of Arizona, USA. This presentation will discuss biomedical optics at the College of Optical Sciences at the University of Arizona.

JS1A.6 • 17:45 Invited

Semiconductor Physics at the Optical Sciences Center, Stephan W. Koch'; 1Philipps Universitat Marburg, Germany. This talk reviews semiconductor physics experiments and theory at the Optical Sciences Center including optical bistability, femtosecond dynamics, as well as semiconductor laser applications.

JS1A.7 • 18:00 Invited

Photonics at OSC, Nasser Peyghambarian1; ¹Univ. of Arizona, USA. Research projects on photonics in communication and future Internet, photonics in computing, silicon photonics integration, fiber lasers, 3D holographic display, nanophotonic materials and devices including optical modulators, and polymeric optical materials and devices will be summarized.

JS1A.8 • 18:00 Invited

Fabrication & Metrology of Large Optics at OSC, James H. Burge¹; ¹Univ. of Arizona, USA. In this presentation, fabrication and metrology of large optics at the College of Optical Science at the University of Arizona will be discussed.

18:30–20:00 Conference Welcome Reception, Ania Terrace

A	rizona Ballroom Salon 8	Arizona Baliroom Salon 9	Arizona Ballroom Salon 10	Arizona Baliroom Salon 11	Arizona Baliroom Salon 12
			FiO		
		07:00-	18:00 Registration, Arizona Ballroor	n Foyer	
	08:00–12:00 JM1A • Joint FiO/LS Plenary Session and Awards Ceremony, Arizona Ballroom, Salons 1-6 🕑				
		09:40–10:00	Coffee Break, Tucson and Arizona B	allroom Foyer	
	12	2:30–15:25 LM2A • Laser Science Syn	nposium on Undergraduate Reseach	Poster Session, Tucson Ballroom, Salon	E
		13:30–15:00 OSA Optical Commu	unications Technical Group Networki	ng Event, Arizona Ballroom, Salon G	

_ ..

13:30–15:30 FM3A • Silicon Photonics Presider: Shayan Mookherjea; Univ. of California San Diego, USA

FM3A.1 • 13:30 Invited

Large Scale and Low Power Photonic Circuits, Michael R. Watts¹; 'MIT, USA. We discuss the scaling trends and limits of low power and large scale silicon photonic circuits, addressing the questions of where we are today and where we need to be to meet future insertion points.

FM3A.2 • 14:00 Invited

Silicon Optical Switches for ROADM Applications, Shigeru Nakamura¹, Shigeyuki Yanagimachi¹, Hitoshi Takeshita², Tomoyuki Hino², Akio Tajima², Kiyoshi Fukuchi²; 'Green Platform Res. Labs, NEC Corporation, Japan; ²Green Platform Res. Labs, NEC Corporation, Japan. Silicon photonics has been applied to integrating many thermo-optical switch elements into one-chip 8 x 8 optical path switch device for CDC-ROADMs. High extinction ratio operation independently of polarization and ambient temperature has been demonstrated.

13:30–15:30 FM3B • Nonlinear Optics in Micro and Nano-Optical Structures I Presider: Alexander Gaeta; Cornell Univ., USA

FM3B.1 • 13:30

Microwave Generation Using Nonlinear Optics in High-Q Resonators, Kerry J. Vahala'; 'California Inst. of Technology, USA. High Q optical resonators can easily access nonlinear optical mechanisms at remarkably low power levels to produce frequency micro combs and stimulated Brillouin lasers. Progress towards stable microwave generation using these devices will be reviewed.

FM3B.2 • 14:00 Invited

Nanophotonic Structures for Extreme Nonlinearities On-Chip, Michal Lipson¹; 'Cornell Unix., USA. We show unprecedented strong nonlinear response from high confinement nanophotonic waveguides from the NIR to the Mid IR spectral range, by controlling the dispersion and the effective nonlinearities though novel nanofabrication techniques and novel materials.

13:30–15:30 FM3C • Frequency Comb Generation in Optical Fibers and Their Applications Presider: Goëry Genty; Tampere Univ. of Technology, Finland

FM3C.1 • 13:30 Invited

Noise Inhibited Frequency Generation in Wideband Parametric Mixers, Stojan Radic¹; ¹Univ. of California San Diego, USA. Generation of frequency combs in noise inhibited parametric mixers is reviewed. Fundamental impairment mechanisms and performance limits set by the physical platform are discussed in all-fiber and monolithic devices.

FM3C.2 • 14:00

Frequency-Variable Comb Light Source Using an Optical Frequency Shifter, Satoshi Seki¹, Tatsutoshi Shioda², Ken Kashiwagi¹, Yosuke Tanaka¹, Takashi Kurokawa^{1,3}, 'Tokyo Univ. of Agriculture and Tech, Japan; ²Saitama Univ., Japan; ³National Astronomical Observatory of Japan, Japan. We propose a frequency variable multi-gigahertz-comb light source whose modes are swept over its mode-spacing frequency. We successfully demonstrated a fine sweep of the laser frequency comb ranging from 1520 to 1565 nm.

FM3D • Coherence, Interference,

National Laser Centre, South Africa

Presider: Andrew Forbes: CSIR

FM3D.1 • 13:30 Invited Polarization Controlled Surface Plasmon Polariton Propagation: Physics and Applications, Federico Capasso¹, Jason Mueller¹; ¹School of Engineering and Applied Sciences, Harvard Univ., USA. Structuring metallic surfaces with suitable couplers allows one to control the surface plasmon propagation direction with changing polarization. We present experiments including the demonstration of unidirectional coupling in long range surface plasmon waveguides.

FM3D.2 • 14:00

13:30-15:30

and Polarization I

Polarization Singularities in Superposition of Counter-propagating Vector Laguerre-Gaussian Beams, Sunil Vyas¹, Yuichi Kozawa², Yoko Miyamoto¹, Shunichi Sato², ¹Inst. of Laser Science, The Univ. of Electro-Communications, Japan; ²IMRAM, Tohoku Univ., Japan. Polarization singular structures are studied in the superposition of two counter-propagating vector Laguerre-Gaussian beams. Stokes field is used to analyze the dynamics of the polarization singular points during the propagation of the field.

FM3E.1 • 13:30 Tutorial

Information Optics

13:30-15:15

Univ., USA

Information Based Design for Compressive Imaging, Mark Allen Neifeld¹; ¹Univ. of Arizona, USA. The talk will review design considerations for compressive imaging systems. Both static and adaptive imagers will be discussed with a focus on the use of information theoretic analysis/design metrics.

FM3E • Optical System Design for

Presider: Michael Gehm: Duke

Mark A. Neifeld is a Professor in the Electrical and Computer Engineering Department and in the College of Optical Sciences at the University of Arizona. He received the B.S. degree from the Georgia Institute of Technology in 1985 and the M.S. and Ph.D. degrees from the California Institute of Technology in 1987 and 1991 respectively. Professor Neifeld's current research interests include computational imaging, free-space optical communications,

(continued on page 36)

Tucson Ballroom

Salon B

Tucson Ballroom Salon C

LS

Tucson Ballroom Salon E

15:45-16:45

LM3I • Laser Science Symposium

See separate program in registration bag for details.

on Undergraduate Research I

FiO

07:00–18:00 Registration, Arizona Ballroom Foyer

08:00–12:00 JM1A • Joint FiO/LS Plenary Session and Awards Ceremony, Arizona Ballroom, Salons 1-6

09:40–10:00 Coffee Break, Tucson and Arizona Ballroom Foyer

12:30–15:25 LM2A • Laser Science Symposium on Undergraduate Reseach Poster Session, Tucson Ballroom, Salon E

13:30–15:00 OSA Optical Communications Technical Group Networking Event, Arizona Ballroom, Salon G

13:30-15:30 FM3F • Symposium on Translational Biophotonics - Focus on Cancer D

Presider: Melissa Skala, Vanderbilt Univ., USA

FM3F.1 • 13:30 Invited

Knowledge of the Principles of Oxygen Transport in Solid Cancers Enables Translational Decisions, Mark Dewhirst1: ¹Duke Univ., USA, This lecture will start with a brief overview of causes of tumor hypoxia and end with clinical data, showing that optical spectroscopy holds promise in predicting treatment response from oxygen dependent cancer therapies.

LM3G.1 • 13:30 Invited

Marburg, Germany

13:30-15:30

Ultrashort-pulse Generation Using VECSELs and MIXSELs, Ursula Keller1: 1ETH Zurich, Switzerland, Latest results of highpower ultrafast semiconductor lasers are reviewed based on optically pumped VECSELs and MIXSELs. Power scaling with ps and fs pulses with the excellent noise performance makes them highly attractive for many applications.

LM3G • Semiconductor Nanooptics I

Presider: Stephan Koch; Philipps Universitat

LM3H.1 • 13:30 Invited

LM3H • Ultracold Gases I

13:30-15:30

USA

Spin-dependent Gauge Fields in Atomic Gases, Ian B. Spielman¹: ¹Quantum Measurement, JQI, NIST and UMD, USA, Gauge fields -- ubiquitous in Physics -- can depend on "spin" degrees of freedom, and in materials these are often manifest as spin-orbit coupling. Here I present our work synthesizing SOC for ultracold neutral atoms.

Presider: Brian Anderson; Univ. of Arizona,

FM3F.2 • 14:00 Invited

Preclinical and Clinical Chemotherapy Response Monitoring with Diffuse Optical Technologies, Darren M. Roblyer¹, Raeef Istfan¹, Sveda Tabassum¹, Junije Wu², David Waxman²; ¹Biomedical Engineering, Boston Univ., USA; ²Biology, Boston Univ., USA. We will present initial data demonstrating that Spatial Frequency-Domain Imaging (SFDI) can be used to inform clinical translation by tracking chemotherapy-induced changes of both endogenous and exogenous optical markers of chemotherapy response in preclinical models.

LM3G.2 • 14:00 Invited

VCESL Theory & Experiment, Jerome V. Moloney¹, Isak Kilen¹, Joerg Hader¹, Stephan W. Koch²; ¹College of Optical Sciences, Univ. of Arizona, USA; ²Department of Physics, Marburg Univ., Germany. Ultrafast nonequilibrium kinetic hole-burning in electron/hole carrier distributions dictates the outcome of short pulse generation in inverted semiconductor quantum wells, makes the traditional gain picture redundant and clarifies recent reported experimental record performances.

LM3H.2 • 14:00 Invited

Vortex Dynamics in Spin Orbit BECS, Alexander Fetter1; 1Physics, Stanford Univerity, USA. Spin-orbit coupled condensates typically have two or more components. Each component has guantized circulation, but they need not be the same, leading to the possibility of half-quantized vortices with unit circulation in only one component.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FM3A • Silicon Photonics— Continued	FM3B • Nonlinear Optics in Micro and Nano-Optical Structures I— Continued	FM3C • Frequency Comb Generation in Optical Fibers and Their Applications—Continued	FM3D • Coherence, Interference, and Polarization I—Continued	FM3E • Optical System Design for Information Optics—Continued
Presentat recording w Access t www.fron and c	tions selected for g are designated with a O . these by visiting tiersinoptics.com licking on the	FM3C.3 • 14:15	FM3D.3 • 14:15	quantum key distribution, optical computing, and compressive sensing. He has coauthored more than 100 journal articles and more than 50 conference papers in the general areas of optical physics and engineering including optical imaging, communications and storage, information theory, coding, and signal process- ing. Professor Neifeld is a Fellow of the OSA and SPIE and frequently participates in conference organization/management for these societies. He recently completed a term as a DARPA/DSO Program Manager for which he was awarded the Secretary of Defense Medal for Exceptional Public Service.
Pres	View sentations button.	Broadband Multi-Gigahertz-Spaced Fre- quency Comb for Near Infrared Doppler Instrument, Yasushi Okuyama ¹ , Ken Kashiwagi ¹ , Takayuki Kotani ² , Jun Nishikawa ² , Motohide Tamura ^{3,2} , Takashi Kurokawa ^{2,1} ; ¹ Tokyo Univ. of Agriculture and Tech, Japan; ² National Astro- nomical Observatory of Japan, Japan; ³ The Univ. of Tokyo, Japan. We have developed a laser frequency comb generator for the Earth-like exoplanet detection. We successfully gener- ated a 12.5-GHz-spacing laser frequency comb ranging over 600 nm from 1070 to 1700 nm.	Encoding High Order Cylindrically Polarized Light Beams, Jeffrey A. Davis ¹ , Ignacio Moreno ² , Don M. Cottrell ¹ , Ramiro Donoso ³ ; ¹ Physics, San Diego State Univ., USA; ² Optica y Tecnología Electrónica, Universidad Miguel Hernández, Spain; ³ Departamento de Ciencias Físicas, Universidad de La Frontera, Chile. Abstract: We generate cylindrically polarized and more complicated variations of polarized light beams using a liquid crystal spatial light modulator and a double-pass architecture by adding additional linear and quadratic phase shifts to the two circular polarization components.	Optimal Point Spread Function Engineering for 3D Super-Resolution Imaging, Yoav Shecht- man ¹ , Steffen J. Sahl ¹ , Adam S. Backer ¹ , W. E. Moerner ¹ ; 'Stanford Univ, USA. We propose a framework for pupil plane engineering which produces optimal point spread functions (PSFs) in terms of theoretical information content. We generate and experimentally demonstrate maximally informative PSFs for high background 3D super-resolution imaging.
FM3A.3 • 14:30 Invited CMOS Integrated Ge Detectors, Jason Orcut John Ellis-Monaghan ² , Steve Shank ² , Marw. Khater ² , Ed Kiewra ² , Solomon Assefa ¹ , Frederi G. Anderson ² , Jonathan E. Proesel ¹ , Andre Stricker ² , Mounir Meghelli ¹ , Yurii A. Vlasov ¹ , W Green ¹ , Wilfried Haensch ¹ ; 'IBM TJ Watson R search Center, USA; ² Microelectronics Divisio IBM Systems & Technology Group, USA. Met ods for integrating germanium detectors with CMOS processes to form high performan integrated monolithic receivers will be reviewed	 FM3B.3 • 14:30 Control of Polariton Patterns in Semiconductor Microcavities, Y. Tse¹, P. Lewandowski², V. Ardizzone³, N. Kwong^{4,1}, M. Luk¹, A. Luecke², M. Abbarchi^{3,5}, J. Bloch⁵, E. Baudin³, E. Galopin⁵, A. Lemaitre⁵, C. Tsang¹, K. Chan¹, P. Leung¹, Ph. Roussignol³, Rolf Binder⁴, J. Tignon³, S. Schumacher²; ¹Chinese Univ. of Hong Kong, China; ²Univ. of Paderborn, Germany; ³CNRS Paris, France; ⁴Univ. of Arizona, USA; ⁵CNRs Marcoussis, France. Polaritons in semiconductor microcavities can form patterns analogous 	FM3C.4 • 14:30 Distance Measurement Using Temporal- Coherence Interferometer with Optical Frequency Comb and Fiber Etalons, Hirokazu Matsumoto', Kiyoshi Takamasu'; Univ. of Tokyo, Japan. Absolute distance measuring method is developed by using temporal-coherence interferometry of optical frequency comb with 15-GHz fiber etalons, and a scanning stage. The fringe processing is automatically made with electric circuit.	FM3D.4 • 14:30 Guided-Mode Resonant Broadband Reflec- tor in TE Polarization Using Subwavelength Two-Part Gratings, Mohammad J. Uddin', Tanzina Khaleque', Robert Magnusson'; 'Elec- trical Engineering, Univ. of Texas at Arlington, USA. TE polarization broadband reflector using subwavelength two-part gratings and nano- metric homogeneous layer of a-Si on quartz is reported. Representative reflector exhibits 99% reflectance over a 380-nm spectral range (1440-1820 nm). Experimental reflectance >90%	FM3E.3 • 14:30 Deep Subwavelength Imaging Using Multiple Correlated Narrow Slits, Yuecheng Shen ¹ , Lihong V. Wang ² , Jung-Tsung Shen ¹ ; ¹ Depart- ment of Electrical and Systems Engineering, Washington Univ. in St. Louis, USA; ² Department of Biomedical Engineering, Washington Univ. in St. Louis, USA. We numerically demonstrated an ultra-high resolution (wavelength/50~ 40nm at wavelength A=2.08µm), high-throughout (~ 66%), and non-destructive optical lens, based on the notion of correlated nano-torches formed

Focus will be on achieving fiber-coupled input

sensitivity that meets or exceeds traditional

ROSA approaches.

to conventional Turing patterns, including

two-spot and hexagon far field patterns. We

present theoretical concepts of pattern formation and control, together with experimental

observations.

Monday, 20 October

is achieved over a ~360-nm bandwidth.

in a subwavelength metallic grating.

FM3F.3 • 14:30 Invited

What Can We Learn About Cancer Therapy from Single Cell Tracking, Charles P. Lin¹; ¹Massachusetts General Hospital, USA. Small numbers of treatment-resistant cancer cells often persist after apparently successful therapy and eventually return to cause disease relapse. We are developing intravital microscopy techniques to uncover the habitat sheltering these residual cancer cells.

LM3G.3 • 14:30 Invited

Quantum Optical Experiments in Semiconductor Quantum Well Systems, Steven T. Cundiff^{1,2}, Andrew E. Almand-Hunter^{1,2}, Eric Martin^{1,2}, Hebin Li¹; ¹JILA, NIST & Univ. of Colorado, USA; ²Department of Physics, Univ. of Colorado, USA. Many-body excitations in semiconductors are probed by exploiting the mapping between quantum optical correlations and electron-hole correlations. The experimentally measured response to coherent states is projected to determine the effect of quantum optical statistics.

LM3H.3 • 14:30 Invited

Experiments with Bose-Einstein Condensates in a Spinorbit Coupled Optical Lattice, Peter Engels'; 'Department of Physics and Astronomy, Washington State Univ., USA. Ultracold quantum gases dressed by laser light are a powerful tool to investigate the dynamics of quantum mechanical Hamiltonians. This talk will describe experiments conducted with spin-orbit coupled Bose-Einstein condensates confined in optical lattices.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FM3A • Silicon Photonics— Continued	FM3B • Nonlinear Optics in Micro and Nano-Optical Structures I— Continued	FM3C • Frequency Comb Generation in Optical Fibers and Their Applications—Continued	FM3D • Coherence, Interference, and Polarization I—Continued	FM3E • Optical System Design for Information Optics—Continued
	FM3B.4 • 14:45 Sum and Difference Frequency Generation of Optical and Microwave Photons in a Whis- pering Gallery Mode Resonator, Florian Sedl- meir ^{1,2} , Martin F. Schneidereit ^{1,2} , Sascha Preu ³ , Mario Mendéz-Aller ⁴ , Antti Räisänen ⁵ , Enrique Garcia-Munoz ⁴ , Gerd Leuchs ^{1,2} , Harald G.L. Schwefel ^{1,2} , ¹ Max Planck Inst., Germany; ² Inst. for Optics, Information and Photonics, Univ. of Erlangen, Germany; ³ TU Darmstadt, Germany; ⁴ Univ. Carlos III of Madrid, Spain; ⁵ Aalto Univ., Finland. We present an all-resonant scheme within a very carefully tailored lithium niobate whispering gallery mode resonator to convert weak microwave signals to the optical domain via sum and difference frequency generation.	FM3C.5 • 14:45 Ultrafast RGB Laser Source Based on Second Harmonic Generation from a Fiber Laser Driven Dual Zero Dispersion Wavelength Fiber Source, Yuhong Yao', Wayne H. Knox', 'Univ. of Rochester, USA. We demonstrate a novel ultrafast RGB source based on second har- monic generation using a dual zero dispersion wavelength fiber source. We achieve milli-Watt 425nm, 517nm, 630nm pulses and discuss the scalability potential of our approach.	FM3D.5 • 14:45 Modulation of Rotationally Symmetric Mask on the Focusing of Azimuthally Polarized Beams, Peng Li ¹ ; 'Northwestern Polytechnic Univ., China. We theoretically reveal the modulation of rotationally symmetric masks on the redistribution of focused azimuthally polarized beams by angular diffraction. By nu- merical method based on vector diffraction, we demonstrate our interpretation on those focusing behaviors.	FM3E.4 • 14:45 Hyperspectral Compressive Imaging Based on Spectral Modulation in the Spectral Domain, Yitzhak August ¹ , Yaniv Oiknine ¹ , Adrian Stern ¹ , Dan G. Blumberg ¹ ; 'Electro-Optical Engineer- ing, Ben Gurion Univ. of the Negev, Israel. Recently we have proposed a new compressive spectral sensing method based on modulation in the spectral domain, without the need of diffractive or dispersive elements. Here, we expand the compressive sensing spectrometry to hyperspectral imaging.
FM3A.4 • 15:00 C A linear push-pull silicon optical modulator, Chi Xiong ¹ , Douglas Gill ¹ , Jessie Rosenberg ¹ , Marwan Khater ¹ , Tymon Barwicz ¹ , Solomon As- sefa ¹ , Steve Shank ² , Carol Reinholm ² , Ed Kiewra ² , John Ellis-Monaghan ² , Swetha Kamlapurka ¹ , Andreas Stricker ¹ , Will Green ¹ , Yurii A. Vlasov ¹ , Wilfried Haensch ¹ ; ¹ BM T.J. Watson Research Center, USA; ² IBM Systems & Technology Group, Microelectronics Division, USA. We present a linear push-pull driven silicon modulator fab- ricated in IBM's CMOS9WG technology node. The Si modulator shows third order nonlinearity suppression 3 dB superior in comparison with a commercial lithium niobate modulator.	FM3B.5 • 15:00 Laterally Emitted Surface Second Harmonic Generation in a Single ZnTe Nanowire, Wei- wei Liu ¹ , Kai Wang ¹ , Zhe Liu ¹ , Guozhen Shen ¹ , Peixiang Lu ¹ ; 'Huazhong Univ of Science and Technology, China. We report surface second harmonic generation (SHG) in a single ZnTe nanowire. The SHG has a high efficiency of 5×10^(-6) and low divergence angle of 4°. Spe- cial polarization dependence is also observed in the experiment.	FM3C.6 • 15:00 Invited Frequency Combs in Telecommunications Applications, Nikola Alic'; 'Univ. of California San Diego, USA. State of the art parametric combs for transmission systems are discussed. Implementation capable of maintaining coher- ence across thousands of generated lines at a fraction of dissipation of discrete lasers is fully compliant with transmission requirements.	FM3D.6 • 15:00 Radial and Azimuthal Polarized Vector Bessel Beams, Giovanni Milione ¹ ; ¹ CUNY City College, USA. We experimentally investigate generation, self-healing, and application of radial and azi- muthal polarized vector Bessel beams. Vector Bessel beams can self-heal their intensity and spatially inhomogeneous state of polarization. Applications in optical trapping are discussed.	FM3E.5 • 15:00 Compressive Holography using Fresnelet Based Sparsification of Input Complex Ob- ject Field, Prakash Ramachandran', Zachariah C. Alex ² , Anith Nelleri'; 'School of Electronics Engineering, VIT Univ. Chennai Campus, India; ² School of Electronics Engineering, VIT Univ., India. Compressive sensing is applied for clas- sical phase shifting digital holography. The object wave is sparse in Fresnelet transform domain. The reconstructed image quality is satisfactory even when 50% of sensed data is used for processing.
FM3A.5 • 15:15 Permanent, Post-fabrication Trimming of Polarization Diversity Silicon Circuits by Single fs Laser Pulses, Daniel Bachman ¹ , Zhi- jiang Chen ¹ , Jocelyn N. Westwood ^{2,3} , Wayne K. Hiebert ^{2,3} , Yves Painchaud ⁴ , Michel Poulin ⁴ , Robert Fedosejevs ⁴ , Ying Y. Tsui ¹ , Vien Van ¹ ; ¹ Electrical and Computer Engineering, Univ. of Alberta, Canada; ² Physics, Univ. of Alberta, Canada; ⁴ TeraXion, Canada. Single 400 nm femtosecond laser pulses were used to perform phase trimming of a polarization diversity, DPSK demodulator based on silicon photonics. The technique may be applied to tune any phase sensitive silicon circuit.	FM3B.6 • 15:15 Generation of Broadband Continuum in Spiral Photonic Microwire by Femtosecond Pulses for Infrared Nonlinear Applications, Amira Baili', Rim Cherif', Mourad Zghal'; 'GreS'Com Laboratory, Univ. of Carthage, Engineering School of Communication of Tunis (Sup'Com),, Tunisia; ² Optoelectronics Research Centre, Univ. of Southampton, UK. We numerically investigate supercontinuum generation in spiral photonic microwire pumped in the normal dispersion regime. A spectrum spanning more than two octaves is obtained in 5 mm propagation with low peak power pulses at 2.8µm.		FM3D.7 • 15:15 Unconventional Polarization States Applied to Aerosol Sensing, Brandon G. Zimmerman ¹ , Thomas G. Brown ¹ ; ¹ The Inst. of Optics, USA. We discuss how one can carry out Mueller matrix polarimetry of particle suspensions using spatial polarization modulation of an illuminating beam created using a Nomarski prism and quarter wave plate	
	15:30–16:00	Coffee Break, Tucson and Arizona Ba	llroom Foyers	

38

Monday, 20 October

Tucson Ballroom	Tucson Ballroom	Tucson Ballroom	Tucson Ballroom
Salon A	Salon B	Salon C	Salon E
FiO		LS	
FM3F • Symposium on Translational	LM3G • Semiconductor Nanooptics I—	LM3H • Ultracold Gases I—Continued	LM3I • Laser Science Symposium on
Biophotonics - Focus on Cancer—Continued	Continued		Undergraduate Research I—Continued

Molecular and Metabolic Imaging of Tumors to Inform Therapeutic Interventions, Narasimhan Rajaram'; 'Duke Univ., USA. This talk will focus on our efforts to combine endogenous and exogenous sources of molecular and metabolic contrast to guide tumor-specific therapy and reduce unnecessary treatment.

Quantum Theory of Dropletons, Mackillo Kira'; ¹Univ. Marburg, Germany. A quantum theory is presented for the identification of dropletons as new quasiparticles in GaAs quantum wells. Dropletons consist of more than four electronhole pairs in a liquid-like state and have quantized binding energy due to their small size.

LM3H.4 • 15:00 Invited

Simulating Many-Body Dynamics in Systems of Cold Atoms, Molecules, and Ions, Johannes Schachenmayer¹, Alexander Pikovski¹, Bihui Zhu¹, Murray Holland¹, Ana Maria Rey¹; 'Iniv. of Colorado at Boulder JILA, USA. Experiments with cold atoms/molecules in optical lattices or trapped ions make it possible to observe quantum many-body dynamics with long-range interactions. We develop numerical techniques for these systems and explore connections between simulatability and entanglement.

15:30–16:00 Coffee Break, Tucson and Arizona Ballroom Foyers

Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
	FiO		
16:00–17:45 FM4B • Nonlinear Optics in Micro and Nano-Optical Structures II Presider: Alexander Sergienko, Boston Univ., USA	16:00–18:00 FM4C • Fiber Frequency Combs and Mode-Locked Lasers Presider: Nikola Alic; Univ. of California San Diego, USA	16:00–18:00 FM4D • Coherence, Interference, and Polarization II Presider: Kevin Rolland-Thompson; Synopsys, Inc, USA	16:00–17:45 FM4E • Information Capacity of the Photon Presider: Jason Fleischer; Princeton Univ., USA
FM4B.1 • 16:00 Invited Modelocking and Synchronization of Chip- Based Frequency Combs, Alexander L. Gaeta ¹ ; 'Cornell Univ., USA. We describe our recent work on microresonator-based frequency combs and show that mode locking of such combs is analogous synchronization phenomena associ- ated with Kuramoto-based systems.	FM4C.1 • 16:00 Invited Mean-field Numerical Modelling of Microreso- nator Frequency Combs, Miro J. Erkintalo', Ste- phane Coen'; 'Unix of Auckland, New Zealand. We review recent advances in computationally efficient numerical modelling of microresonator frequency combs. We discuss the characteris- tics and formation dynamics of Kerr frequency combs, emphasizing the link to passive fiber resonators and temporal cavity solitons.	FM4D.1 • 16:00 Invited The Polarization Ray Tracing Calculus, Russell A. Chipman ¹ ; 'Univ. of Arizona, USA. The polariza- tion ray tracing calculus facilitates the analysis of polarization dependent point spread functions and optical transfer functions, and can integrate many different polarization models including thin films, anisotropic materials, anisotropic multilayers, diffractive optics, and liquid crystals.	FM4E.1 • 16:00 Invited Compressive Quantum Sensing, John C. Howell'; 'Physics and Astronomy, Univ. of Rochester, USA. We use compressive sensing to measure hitherto difficult quantum signals, high-dimensional entanglement and quantum images.
FM4B.2 • 16:30 Invited Interaction-free All-optical Switches for Quantum Applications, Yu-Ping Huang ^{1,2} , Abijith S. Kowligy ¹ , Yu-Zhu Sun ² , Dmitry V. Strekalov ³ , Prem Kumar ^{1,2} ; <i>1ECS</i> , Northwestern Univ., USA; ² Physics and Astronomy, Northwestern Univ., USA; ³ Jet Propulsion Laboratory, USA. We present a realization of all-optical switching in whispering-gallery-mode microcavities. Operating without the control and probe light beams overlapping in the cavity (in the asymptotic limit), such switches are ideal for use with quantum signals.	FM4C.2 • 16:30 Widely-pulsewidth-tunable Ultrashort Pulse Generation from a Birefringent Carbon Nanotube Mode-locked Fiber Laser, Ya Liu ¹ , Xin Zhao ¹ , Jiansheng Liu ¹ , Guoqing Hu ¹ , Zheng Gong ¹ , Zheng Zheng ¹ ; ¹ School of Electronic and Information Engineering, Beihang Univ., China. Through leveraging both the nonlinear hybrid mode-locking and the linear Lyot filtering ef- fects, ultrashort pulsese covering a nearly one order-of-magnitude pulsewidth range can be generated from a CNT mode-locked fiber laser with large cavity birefringence.	FM4D.2 • 16:30 Cloaked Nanowire Grid Polarizers, Matthew C. George ¹ , Stew Nielson ¹ , Fric Gardner ¹ ; ¹ Moxtek, Inc., USA. This work presents experimental and optical modeling results on narrow-band, cloaked wire grid polarizers composed of nano- stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications.	FM4E.2 • 16:30 Invited High Information Capacity Image Recognition Using Correlated Orbital Angular Momen- tum (OAM) States, Alexander V. Sergienko ¹² , Nestor Uribe-Patarroyo ¹ , Andrew Fraine ¹ , Casey Fitzpatrick ¹ , David Simon ^{3,1} , Olga Minaeva ⁴ ; ¹ Dpet. of ECE, Boston Univ., USA; ² Dept. of Physics, Boston Univ., USA; ³ Dept. of Physics and Astronomy, Stonehill College, USA; ⁴ Dept. of Biomedical Engineering, Boston Univ., USA, We present a novel approach that allows object identification using fewer resources than in con- ventional pixel-by-pixel imaging by exploiting
	Arizona Ballroom Salon 9	Arizona Ballroom Salon 9Arizona Ballroom Salon 10Fi O16:00-17:45FMB • Nonlinear Optics in Micro And Nano-Optical Structures II O Boston Univ., USAFME 1 • 16:00FMS 1 • 16:00FMS 1 • 16:00Modelocing and Synchronization of Chip Based Frequency Combs, Alexander L Gaeti 'Cornell Univ., USA. We describe our recent work on microresonator-based frequency combs analogous synchronization phenomena associ- ated with Kuramoto-based systems.FMB 2 • 16:30FMS 2 • 16:30 </td <td>Arizona Ballroom Salon 9 Arizona Ballroom Salon 10 Arizona Ballroom Salon 11 FIO FIO 16:00–17:45 FM4B • Nonlinear Optics in Micro Presider: Alexander Sergienko, Boston Univ, USA 16:00–18:00 FM4C • Fiber Frequency Combs and Mac-Optical Structures 0 Information of Optical Structures 0 Information of Optical Structures 0 Modelocting and Synchronization of Optical Correll Univ., USA Information of Optical Structures 0 <t< td=""></t<></td>	Arizona Ballroom Salon 9 Arizona Ballroom Salon 10 Arizona Ballroom Salon 11 FIO FIO 16:00–17:45 FM4B • Nonlinear Optics in Micro Presider: Alexander Sergienko, Boston Univ, USA 16:00–18:00 FM4C • Fiber Frequency Combs and Mac-Optical Structures 0 Information of Optical Structures 0 Information of Optical Structures 0 Modelocting and Synchronization of Optical Correll Univ., USA Information of Optical Structures 0 Information of Optical Structures 0 <t< td=""></t<>

Generation of Repetition-rate-tunable Ultra-

short Pulses from a Mode-locked Fiber Laser

with Large Polarization Mode Dispersion,

Zheng Gong¹, Guoqing Hu¹, Xin Zhao¹, Ya

Liu¹, Zheng Zheng¹; ¹School of Electronic and

Information Engineering, Beihang Univ., China.

The repetition rate of mode-locked pulses from

a fiber cavity with relatively large PMD could

be tuned over a range proportional to the

intracavity birefringence, without significant

state-of-polarization modulation.

Generation of the Ring-shaped Optical Lattice

Using Axially-symmetric Polarization Elements

(II), Moritsugu Sakamoto¹, Keisaku Yamane^{1,2},

Naoshi Murakami¹, Ryuji Morita^{1,2}, Kazuhiko

Oka1; ¹Division of Applied Phisycs, Hokkaido Univ., Japan; ²JST, CREST, Japan. A novel opti-

cal system of a ring-shaped optical-lattice

generator using axially-symmetric polarization

elements is presented. A series of axially-

symmetric polarization elements incorporated

into the configuration enables generating any combination of vortices with even-numbered

topological charges.

angular momentum states to multiple azimuthal

Fourier coefficients.

Monday, 20 October

FiO

16:00–18:00 FM4F • Novel Methods for Tissue Imaging and Therapy

Presider: Nozomi Nishimura; Cornell Univ., USA

FM4F.1 • 16:00 D

In Vivo Fluorescence Imaging for Folate-Targeted Kinetics, Kevin J. Webb', Esther Tsai', Brian Bentz', Venkatesh Chelvam², Vaibhav Gaind', Philip Low'; 'Purdue Univ., USA; '²Department of Chemistry, Indian Inst. of Technology Indore, India. We demonstrate the in vivo imaging of a mouse tumor using fluorescence optical diffusion tomography and the extraction of kinetic information from a compartment model, yielding the first folate drug release kinetics inside cancer cells.

FM4F.2 • 16:15 Invited

Multiscale Optical Imaging for Detection of Oral Cancer, Kristen C. Maitland'; 'Biomedical Engineering, Texas A&M Univ., USA. Confocal microscopy provides high resolution optical sectioning of epithelial tissue, but with limited field of view. Fluorescence lifetime imaging is employed for macroscopic guidance with biochemical contrast to complement the microscopic morphologic imaging of reflectance confocal microscopy.

FM4F.3 • 16:45 D

Autofocus Optimization for Tracking Tissue Surface Topography in Large-Area Mosaicking Structured Illumination Microscopy, Tyler C. Schlichenmeyer^{1,2}, Mei Wang¹, Carola Wenk², J. Quincy Brown¹; ¹Biomedical Engineering, Tulane Univ., USA; ²Computer Science, Tulane Univ., USA. Mosaic imaging of large tissues with structured illumination microscopy (SIM) presents a need for rapid autofocus algorithms for tracking tissue surface topography. We present a novel SIM autofocus function based on the projected pattern modulation, and compare to established functions. Tucson Ballroom Salon B

LM4G • DLS Dissertation Award Session

Presider: David Reitze: California Inst. of

Squeezing Quantum Noise in a Full Scale Gravitational

Wave Interferometer, Sheila E. Dwyer1; 1LIGO Hanford

Observatory, Caltech, USA. We have demonstrated sensitiv-

ity improvement in a full scale interferometric gravitational

wave detector using squeezed states. Our results indicate

that squeezing is a technically feasible and astrophysically

promising early upgrade to Advanced LIGO.

Tucson Ballroom Salon C

LS

16:00–18:00

LM4H • Ultracold Gases II Presider: Peter Engels; Washington State Univ., USA

LM4H.1 • 16:00 Invited

Coherent Optics of Magnon Waves in a Spinor Bose-Einstein Condensate, Dan M. Stamper-Kurn^{1,2}, ¹Physics, Univ. of California Berkeley, USA; ²Materials Sciences Division, Lawrence Berkeley National Laboratory, USA. Using optical pulses, we create coherent magnon waves in spinor Bose-Einstein condensates of rubidium and utilize magnon interferometry to measure their energy and visualize topological defects. Magnon thermometry, cooling, and thermodynamics will be described. Salon E

Tucson Ballroom

See separate program in registration bag for details.

LM4I • Laser Science Symposium on Undergraduate Research II

17:00-18:00

LM4G.2 • 16:30 Invited

16:00-18:00

Tech., USA

LM4G.1 • 16:00 Invited

Probing Delocalization in Photosynthetic Antenna Complexes with Femtosecond Chiral Two-Dimensional Spectroscopy, Andrew Fidler¹, Ved P. Singh², Phil D. Long³, Peter Dahlberg³, Gregory S. Engel²; ¹Los Alamos National Labratory, USA; ²Department of Chemistry, Inst. for Biophysical Dynamics, James Franck Inst., The Univ. of Chicago, USA; ³Program in the Biophysical Sciences, Inst. for Biophysical Dynamics, The Univ. of Chicago, USA. We present a chiral two-dimensional mapping of light harvesting complex 2. This methodology allows us to follow femtosecond changes in the chirality of the electronic structure, providing detailed insights into the excitation energy transfer events.

Monopoles in Spinor Bose-Einstein Condensates, David Hall¹, Michael W. Ray¹, Emmi Ruokokoski², Konstantin Tiurev², Saugat Kandel¹, Mikko Möttönen^{2,3}; ¹Physics and Astronomy, Amherst College, USA; ²Applied Physics, Aalto Univ., Finland; ³Low Temperature Laboratory, Aalto Univ., Finland. We describe the creation and observation of Dirac monopoles in a synthetic magnetic field, and also provide evidence of isolated topological point defects in the order parameter of a spinor Bose-Einstein condensate.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FM4A • Integrated Nanophotonics—Continued	FM4B • Nonlinear Optics in Micro and Nano-Optical Structures II— Continued	FM4C • Fiber Frequency Combs and Mode-Locked Lasers— Continued	FM4D • Coherence, Interference, and Polarization II—Continued	FM4E • Information Capacity of the Photon—Continued
FM4A.3 • 17:00 Invited Filters and Spectrum Analyzers, and Their Applications in Classical and Quantum Tele- communications, Shayan Mookherjea'; 'Univ. of California San Diego, USA. We present examples of using silicon photonic components to perform multi-wavelength optical spectral measurements and multi-channel add/drop functionality in data-center networks, and for manipulating the quantum spectrum of photons generated by spontaneous four-wave mixing.	FM4B.3 • 17:00 Retrieving the Complex Intracavity Pump Field of a Kerr Comb from the Through Port Data, Xiaoxiao Xue ¹ , Yi Xuan ^{1,2} , Yang Liu ¹ , Pei- Hsun Wang ¹ , Steven Chen ¹ , Jian Wang ^{1,2} , Daniel E. Leaird ¹ , Minghao Qi ^{1,2} , Andrew M. Weiner ^{1,2} ; ¹ School of Electrical and Computer Engineer- ing, Purdue Univ., USA; ² Birck Nanotechnology Center, Purdue Univ., USA. A method of retriev- ing the complex intracavity pump field from the through port is proposed, and verified through characterizing the time-domain waveform of a mode-locked comb related to dark soliton for- mation in a normal-dispersion microresonator.	FM4C.4 • 17:00 Simultaneous Operation of a Carbon Nano- tube Hybrid Mode-locked Laser Under Dif- ferent Mode-locking Regimes, Ya Liu ¹ , Xin Zhao ¹ , Jiansheng Liu ¹ , Zheng Gong ¹ , Guoqing Hu ¹ , Zheng Zheng ¹ ; <i>'School of Electronic and</i> <i>Information Engineering, Beihang Univ., China.</i> Simultaneous oscillation of pulses with vastly different pulse widths in a carbon nanotube mode-locked fiber ring cavity is observed, as the intravity birefringence results in different pulse formation mechanisms under both nonlinear and linear regimes.	FM4D.4 • 17:00 Modeling Depolarization Effects in Highly Scattering Media, Sajad Ghatrehsamani ¹ , Gra- ham Town ¹ ; ¹ Macquarie, Australia. The propaga- tion of polarized light through micro-structured materials such as air-polymer composites was modeled using a Monte-Carlo algorithm, and the effect of material parameters on light diffu- sion and depolarization determined, especially at large scattering angles.	FM4E.3 • 17:00 O Quantitative Phase Imaging using Entangled Photon Pairs, Chien-Hung Lu ¹ , Jason W. Fleischer ¹ ; 'Princeton Univ., USA. We ex- perimentally demonstrate phase imaging using entangled photons and transport-of-intensity methods. We show that the reconstruction of an unknown phase object from quantum light is more sensitive and less noisy than that of classical illumination.
	FM4B.4 • 17:15 Measuring Optical Phases of Kerr Frequency Combs, Aurélien Coillet ¹ , Pascal Del'Haye ¹ , William Loh ¹ , Katja Beha ¹ , Scott B. Papp ¹ , Scott A. Diddams ¹ ; ' <i>NIST Boulder, USA</i> . We present two methods for measuring the optical phases of the spectral lines of microresonator-based frequency combs, and use these phase sensi- tive measurements to study novel phase-locked comb states.	FM4C.5 • 17:15 All-fiber Mode-locking Using a Two Concen- tric Core Fiber Saturable Absorber, Elham Nazemosadat ¹ , Arash Mafi ¹ ; ¹ Department of Electrical Engineering and Computer Science, Univ. of Wisconsin-Milwaukee, USA. An all-fiber mode-locking element which operates based on nonlinear switching in a novel two concentric core fiber structure is designed. This multicore cylindrically symmetric structure can be easily fabricated.	FM4D.5 • 17:15 Ray Theory of Wave for Particle Scattering, Kuan F. Ren'; 'Universite de Rouen, France. By introducing the curvature of the wave front in the ray model, Ray Theory of Wave permits to describe with good precision the scattering of large and arbitrarily shaped objects with a smooth surface.	FM4E.4 • 17:15 High-dimensional Quantum Key Distribution with Photonic Orbital Angular Momentum, Mohammad Mirhosseini ¹ , Omar S. Magana Loaiza ¹ , Malcolm O'Sullivan ¹ , Brandon Roden- burg ¹ , Mehul Malik ² , Martin Lavery ³ , Miles Padgett ³ , Daniel Gauthier ⁴ , Robert W. Boyd ^{1.5} ; ¹ The Inst. of Optics, Univ. of Rochester, USA; ² Inst. for Quantum Optics and Quantum Infor- mation, Austrian Academy of Sciences, Austria; ³ Department of Physics, Univ. of Glasgow, UK; ⁴ Department of Physics, Duke Univ., USA; ⁵ De- partment of Physics, Univ. of Ottawa, Canada. We experimentally demonstrate a quantum cryptography system based on photonic orbital angular momentum. The system achieves a channel capacity of 2.1 bits per sifted photon through the use of a 7-dimensional alphabet for encoding information.
FM4A.4 • 17:30 Sub-wavelength Critical Coupling for Densely Integrated Nano-photonics, Michael Mrejen ¹ , Haim Suchowski ¹ , Taiki Hatakeyama ¹ , Chihhui Wu ¹ , Liang Feng ¹ , Yuan Wang ¹ , Xiang Zhang ^{1,2} ; 'NSF Nano-scale Science and Engineering Center (NSEC), Univ. of California, Berkeley, USA; ² Materials Science Division, Lawrence Berkeley National Laboratory, USA. We ex- perimentally demonstrate a novel approach for densely packed coupled waveguides, based on adiabatic elimination scheme, allowing control of the inherent coupling between waveguides. At the nano-scale, zero coupling between the waveguides can be achieved.	FM4B.5 • 17:30 Second Harmonic Generation by Metamag- netics: Interplay of Electric and Magnetic Resonances, Rohith Chandrasekar ¹ , Naresh Emani ¹ , Alexei Lagutchev ¹ , Vladimir M. Shalaev ¹ , Alexander Kildishev ¹ , Cristian Ciraci ^{2,3} , David R. Smith ² ; 'Electrical and Computer Engineering, Purdue Univ., USA; 'Electrical and Computer Engineering, Duke Univ., USA; 'Istituto Ital- iano di Tecnologia, Italy. We present the first experimental study of the interplay of electric and magnetic resonances in a metamaterial to measure their independent contributions to second-harmonic generation. Experiments indicate evident contribution to SHG from fundamental magnetic field.	FM4C.6 • 17:30 Invited Efficient Broadband Vacuum-Ultraviolet Generation in Gas-Filled Hollow-Core Pho- tonic Crystal Fibers, John C. Travers ¹ , Alexey Ermolov ¹ , Federico Belli ¹ , Ka Fai Mak ¹ , Michael Frosz ¹ , Francesco Tani ¹ , Amir Abdolvand ¹ , Philip St.J Russell ¹ ; <i>I'Russell Division, Max Planck Inst.</i> for the Science of Light, Germany. We report two techniques for the efficient generation of tun- able ultrafast pulses in the vacuum-ultraviolet, covering at least 117-200 nm, by pumping gas- filled kagomé-style photonic crystal fibers with few-µJ, 35 fs, 800 nm laser pulses.	FM4D.6 • 17:30 Observation of Spectral Interference for Any Path Difference in an Interferometer, Luis Jose Salazar Serrano ^{1,2} , Alejandra Valencia ² , Juan P. Torres ^{1,3} ; ¹ ICFO -The Inst. of Photonic Sciences, Spain; ² Quantum Optics Laboratory, Universidad de los Andes, Colombia; ³ Dept. of Signal Theory and Communications, Universitat Politecnica de Catalunya, Spain. We report experimental ob- servation of spectral interference in a Michelson interferometer, regardless of the relationship between the temporal path difference and the spectral width of an input pulse, by using a weak value amplification scheme.	FM4E.5 • 17:30 C Compressive Direct Measurement of the Transverse Photonic Wavefunction, Moham- mad Mirhosseini ¹ , Omar S. Magana Loaiza ¹ , Seyed Mohammad Hashemi Rafsanjani ² , Robert W. Boyd ^{1,3} ; ¹ The Inst. of Optics, Univ. of Roch- ester, USA; ² Department of Physics, Univ. of Octawa, Canada. We generalize the method of direct measurement and combine it with compressive sensing. Using our method, we measure a 19200-dimensional state using only \$20\%\$ of the total required measurements.

Monday, 20 October

Tucson Ballroom

Salon E

LM4I • Laser Science Symposium

on Undergraduate Research II

Tucson Ballroom Salon A

FiO

FM4F • Novel Methods for Tissue Imaging and Therapy—Continued

FM4F.4 • 17:00 D

Quantitative Autofluorescence Imaging Measures Early Response to Head and Neck Cancer Treatment In Vivo, Amy Shah', Alex Walsh', Paula Pohlmann², Melissa Skala'; 'Biomedical Engineering, Vanderbilt Univ, USA; ²Medicine, Georgetown Univ, USA. Fluorescence intensity and lifetime imaging of NADH and FAD measure metabolic shifts in vivo at an early time-point after treatment with chemotherapy, a targeted inhibitor, and combination treatment in head and neck cancer xenografts.

FM4F.5 • 17:15 D

Trough-Focus OTF Based Optical Quality Testing of Whole Slide Scanners for Digital Pathology, Mojtaba Shakeri', Bas Hulsken², Lucas van Vliet¹, Sjoerd Stallinga¹; ¹Department of Imaging Physics, Delft Univ. of Technology, Netherlands; ²Philips Digital Pathology, Netherlands. We measure the through-focus OTF of whole slide scanners for optical quality testing and monitoring. Analysis of the OTF data gives a system level evaluation of astigmatism, field curvature, chromatic aberrations, coma and spherical aberration.

Acoustic Radiation Force Optical Coherence Elastography, Zhongping Chen¹; ¹Univ. of California Irvine, USA. An acoustic radiation force optical coherence elastography (ARF-OCE) system was developed that combines high speed ARF with high resolution of phase resolved optical coherence tomography to image and quantify tissue biomechanical properties. LM4G • DLS Dissertation Award Session— Continued

Tucson Ballroom

Salon B

LM4G.3 • 17:00 Invited

Shaping Light in Complex Settings, Ido Kaminer^{1,2}, Maor Mutzafi², Gal Haran², Hanan Herzig Sheinfux², Amir Levy¹, Scott Skirlo¹, Jonathan Nemirovsky², Mordechai Segev²; ¹Physics, MIT, USA; ²Physics, Technion Israel Inst. of Technology, Israel. My thesis presents new classes of accelerating beams in nonlinear optics and electromagnetism. These ideas apply to any wave system, recently leading to accelerating wavepackets of Dirac's fermions, revealing intriguing phenomena in relativistic quantum mechanics.

LM4H.3 • 17:00 Invited

Lightspeed at a Snail's Pace: Relativity Meets Ultracold Physics, Lincoln Carr¹, Laith H. Hadda¹, Christopher M. Weaver¹, Kenneth M. O'Hara²; ¹Physics, Colorado School of Mines, USA; ²Physics, Pennsylvania State Univ. USA. Bose-Einstein condensates in crystals of light with honeycomb geometry give rise to nonlinear Dirac equations and relativistic linear stability equations supporting a zoo of long-lived relativistic vortices, skyrmions, and solitons.

Tucson Ballroom

Salon C

LS

LM4H • Ultracold Gases II—Continued

Pulses, Michael Chini'; 'Univ. of Central Florida, USA. Attosecond transient absorption spectroscopy, using ultrabroadband isolated attosecond pulses characterized using the PROOF (phase retrieval by omega oscillation filtering) technique, is demonstrated as a powerful tool for capturing the sub-laser-cycle dynamics in laser-dressed atoms.

LM4H.4 • 17:30 Invited

Probing Quantum Many-body Physics with Bright Matterwave Solitons and Ultracold Polar Molecules, Simon Cornish'; 'Univ. of Durham, UK. We report the realisation of bright matter-wave solitons and the creation of ultracold 87RbCs molecules using quantum degenerate gases in combination with magnetically tunable Feshbach resonances with a view to exploring applications in many-body physics.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FM4A • Integrated Nanophotonics—Continued		FM4C • Fiber Frequency Combs and Mode-Locked Lasers— Continued	FM4D • Coherence, Interference, and Polarization II—Continued	
FM4A.5 • 17:45 Stimulated Brillouin Scattering in High Index- Contrast Optical Waveguides: Energy, Forces and Symmetries, Christian Wolff ¹ , Michael J. Steel ² , Benjamin J. Eggleton ³ , Christopher G. Poulton ¹ ; ¹ School of Mathematical Sciences, Univ. of Technology, Sydney, Australia; ² School of Physics, Macquarie Univ., Australia; ³ Inst. of Photonics and Optical Science (IPOS), School of Physics, Univ. of Sydney, Australia. We theoretically investigate the important physical processes for Stimulated Brillouin Scattering in high-contrast optical waveguides. We explore their symmetry properties and their relationships based on the conservation of energy.			FM4D.7 • 17:45 Induced Transparency and Pulse Delay Using Orthogonally Polarized Whispering-Gallery Modes of a Single Microresonator, Khoa V. Bui', Albert T. Rosenberger'; 'Physics, Oklahoma State Univ., USA. Induced transparency and pulse delay are observed in the throughput from a single microresonator via the superposi- tion of two coresonant modes of orthogonal polarization. The effect is demonstrated using a hollow-bottle microresonator.	
	17:30	-19:00 Meet OSA's Journal Editors, A	nia Terrace	
1	7:30–19:00 Minorities and W	omen in OSA (MWOSA) Networking Re	ception, Tucson Ballroom, Salons I & J	

19:00–20:00 Environmental Sensing Special Talk: AFOSR Program on Imaging and Beam Control Through Deep Turbulence, Arizona Ballroom, Salon 11

19:00–22:00 OSA Student Member Reception, Starr Canyon River, JW Marriott Tucson Starr Pass Resort

19:00–21:00 OSA President's Reception (Invitation Only), Catalina Barbeque Co., located at Starr Pass Country Club, JW Marriott Tucson Starr Pass Resort

Monday, 20 October

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon E	
FiO		LS		
FM4F • Novel Methods for Tissue Imaging and Therapy—Continued	LM4G • DLS Dissertation Award Session— Continued	LM4H • Ultracold Gases II—Continued	LM4I • Laser Science Symposium on Undergraduate Research II	
17:30–19:00 Meet OSA's Journal Editors, Ania Terrace				

17:30–19:00 Minorities and Women in OSA (MWOSA) Networking Reception, Tucson Ballroom, Salons I & J

119:00–20:00 Environmental Sensing Special Talk: AFOSR Program on Imaging and Beam Control Through Deep Turbulence, Arizona Ballroom, Salon 11

19:00–22:00 OSA Student Member Reception, Starr Canyon River, JW Marriott Tucson Starr Pass Resort

19:00–21:00 OSA President's Reception (Invitation Only), Catalina Barbeque Co., located at Starr Pass Country Club, JW Marriott Tucson Starr Pass Resort

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
	07:00	D-17:30 Registration, Arizona Ballroor	n Foyer	
08:00 00:20 VIP	Industry London Notworking Events	Connecting OSA Cornerate Executives	Pasant Graduates and Students Tue	con Pollroom Solon E
08:00-09:30 VIP	Industry Leaders Networking Event: C	connecting OSA Corporate Executives	, Recent Graduates and Students, Tuc	son Bailroom, Salon F
)8:00–10:00	08:00–10:00	08:00–10:00	08:00–10:00	08:00–10:00
Tu1A • Integrated Quantum	FTu1B • Optical Interconnections	FTu1C • Coherence, Interference,	FTu1D • Modulators	FTu1E • Materials for
Optics I D	for Data Centers D	and Polarization III	Presider: Shigeru Nakamura; NEC	Plasmonics D
Presider: Paolo Villoresi; Universita	Presider: Masaaki Hirano;	Presider: Byoungho Lee; Seoul	Corp., Japan	Presider: Robert Norwood; Univ. of

Presider: Paolo Villoresi; Universita degli Studi di Padova, Italy

FTu1A.1 • 08:00 Ultrafast and Fault-Tolerant Quantum Com-

munication over Long Distances, Liang Jiang¹, Sreraman Muralidharan², Jungsang Kim³, Norbert Lutkenhaus⁴, Mikhail Lukin⁵; ¹Dept. of Applied Physics, Yale Univ., USA; ²Dept. of Electrical Engineering, Yale Univ., USA; ³Dept. of Electrical and Computer Engineering, Duke Univ., USA; ⁴Inst. of Quantum Computing, Univ. of Waterloo, Canada; ⁵Dept, of Physics, Harvard Univ., USA. We investigate quantum repeaters using small encoding blocks to correct both operational and photon loss errors, which can send quantum information over long distances at a rate only limited by local gate speed.

Presider: Masaaki Hirano; Sumitomo Electric Industries Ltd, Japan

FTu1B.1 • 08:00 Invited Optical Innovations in Data-centers Intercon-

nects and Networking, Loukas Paraschis1; ¹Cisco Systems, Inc., USA; ²Cox, USA. Review recent innovations in optical interconnects, and network architectures, that allow data-center to cost-effectively scale to the cloud-era requirements for flatter networks, with more flexible provisioning, and higher capacity.

Presider: Byoungho Lee; Seoul National Univ., South Korea

FTu1C.1 • 08:00 Invited

Controlling Light's Handedness Inside Laser Resonators, Andrew Forbes¹, Darryl Naidoo¹; ¹CSIR National Laser Centre, South Africa. We will give an overview of various approaches to create orbital angular momentum carrying beams directly from a laser resonator, highlighting our recent approach to creating general Poincare beams using non-homogeneous polarization optics.

Corp., Japan

FTu1D.1 • 08:00 Invited

Enhancing the Electrooptic Effect Using Modulation Instability, Bahram Jalali¹, David Borlaug¹, Peter Devore¹, Ozdal Boyraz¹, Ali Rostrami¹; ¹Univ. of California Los Angeles, USA. The high-frequency increase in modulator half-wave voltage contradicts the reduction in voltage swing of electronics. We show a solution whereby modulation side-bands are amplified, at the expense of the carrier, using controlled modulation instability.

FTu1E.1 • 08:00

Arizona, USA

Observation of Strong Coupling Between Graphene Plasmons and THz Surface Optical Phonons, Choon How Gan¹, Isaac Luxmoore¹, Qiang Liu², Federico Valmorra², Penglei Li¹, Jerome Faist², Geoffrey Nash¹; ¹College of Engineering, Mathematics and Physical Sciences, Univ. of Exeter, UK; ²Inst. for Quantum Electronics, ETH Zurich, Switzerland. Spectral measurements of electrically-gated graphene nanoribbons deposited on silicon dioxide reveals the dispersion of four branches of surface-phonon-plasmon polaritons. Consistent with calculations, strong coupling via long-range Frölich interactions in the lowest THz branch is observed.

FTu1E.2 • 08:15

Surface Plasmon Polaritons and Visible Light Coupling via Photorefractive Phase Gratings in Indium Tin Oxide Coated Iron-doped LiNbO, Crystal Slabs, Hao Wang¹, Hua Zhao¹, Guangwei Hu¹, Jingwen Zhang¹; ¹Harbin Inst. of Technology, China. 2D diffraction patterns without external feedback, 89% total reflectivity, visible reconfigurable waveguides formed on the slab of ITO coated iron-doped LiNbO, hinted that photorefractive phase gratings are responsible for the excitation of SPPs and strong coupling with light beams.

available online for download. Visit www.frontiersinoptics.com and click on the

Papers are Download **Digest Papers** button.

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D	
FiC)	L	S	
07:00–17:30 Registration, Arizona Ballroom Foyer				

08:00–09:30 VIP Industry Leaders Networking Event: Connecting OSA Corporate Executives, Recent Graduates and Students, Tucson Ballroom, Salon F

08:00–10:00 FTu1F • Optical Trapping and Manipulation Presider: Alvaro Casas-Bedoya; Univ. of Sydney, Australia

FTu1F.1 • 08:00 D

Volume holographic microscopy for holographic 3D particle manipulation, Yuan Luo'; 'National Taiwan Univ., Taiwan. Here we demonstrate a 3D real-time interactive optical manipulating system using holographic optical tweezers incorporating with volume holographic microscope. Intensity information about trapped objects at multiple depths can be captured in a single measurement.

08:00–10:00 FTu1G • General Optical Sciences I Presider: Christian Reimer; INRS-EMT, Canada

FTu1G.1 • 08:00

Two-Stage Optical Parametric Amplification for Generation of Ultrashort 5-µm Pulses in ZnGeP2, Scott Wandel¹, Guibao Xu¹, Igor Jovanovic¹; ¹Penn State Univ., USA. We present a design and preliminary performance of a 5-µm source utilizing two-stage optical parametric amplification in ZnGeP2 pumped by 2-µm millijoule-level ultrafast pulses.

08:00–10:00 LTu1H • Ultracold Gases III Presider: David Hall; Amherst College, USA

08:00-10:00

LTu11 • Semiconductor Nanooptics II Presider: Sander Zandbergen; Univ. of Arizona, USA

LTu1H.1 • 08:00 Invited

Quantum Hydrodynamics and Turbulence in Atomic Bose-Einstein Condensates, Makoto Tsubota¹; ¹Osaka City Univ., Japan. We discuss quantum hydrodynamics and turbulence in atomic Bose-Einstein condensates (BECs). A brief review of the issues is followed by the theoretical and numerical studies on quantum turbulence in multi-component BECs.

LTu1I.1 • 08:00 Invited

Ge Nanowire THz Dynamics, Theodore B. Norris¹, P. Springer², Mackillo Kira²; ¹Univ. of Michigan, USA; ²Dept. of Physics, Philipps-Universität Marburg, Germany. Opticalpump THz-probe time-domain spectroscopy is applied to the study of carrier dynamics in oriented Ge and Si/Ge core/shell nanowires. We discuss the extraction of various relaxation processes, including intraband, interband, and momentum scattering, as well as the possibility for observing indirect exciton formation.

FTu1F.2 • 08:15 Invited

Optical Trapping, Stretching, and Self-Assembly for Biological Measurements, Roshni Biswas¹, Eric Jaquay¹, Mehmet Solmaz¹, Luis J. Martinez¹, Ningfeng Huang¹, Camilo A. Mejia¹, Shao-Hua Wu¹, Jing Ma¹, Shalene Sankhagowit¹, Noah Malmstad¹, Michelle L. Povinelli¹; 'Unix. of Southern California, USA. We describe two optical trapping techniques. We used a dual-beam optical trap to measure membrane mechanical properties. We trapped periodic arrays of nanoparticles using a photonic crystal, a method called light-asisted, templated self assembly.

FTu1G.2 • 08:15

Effect of Forbidden Light on Subsurface IC Imaging, Aydan Uyar¹, Abdulkadir Yurt², Berkin T. Cilingiroglu¹, Bennett B. Goldberg^{4,1}, Selim M. Ühlü^{1,3}; ¹Department of Electrical and Computer Engineering, Boston Univ., USA; ²Division of Material Science and Engineering, Boston Univ., USA; ³Department of Biomedical Engineering, Boston Univ., USA; ⁴Department of Physics, Boston Univ., USA. Forbidden light, the cone of high-angle light formed above critical angle, plays a critical role in near-interface high numerical aperture imaging. We investigate its effect in subsurface imaging in aplanatic solid immersion microscopy on ICs.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FTu1A • Integrated Quantum Optics I—Continued	FTu1B • Optical Interconnections for Data Centers—Continued	FTu1C • Coherence, Interference, and Polarization III—Continued	FTu1D • Modulators—Continued	FTu1E • Materials for Plasmonics—Continued
Fu1A.2 • 08:30 (Ivite) (b) Deterministic Creation and Strong Purcell Enhancement of Long-lived Nitrogen-Vacancy Spin Qubits in Diamond Photonic Crystal A Chen ¹ , Michael Walsh ¹ , Igal Bayn ¹ , Jordan Goldstein ¹ , Ophir Gaathon ¹ , Matthew E. Trusheim ¹ , Ming Lu ² , Jacob Mower ¹ , Mircea Cotlet ² , Matthew L. Markham ³ , Daniel Twitchen ³ , Dirk Englund ¹ ; 'MIT, USA; ² Dept. of Electrical Engineering, Columbia Univ., USA; ³ Center for Functional Nanomaterials, Brookhaven Na- tional Laboratory, USA; ⁴ College of Nanoscale Science and Engineering, Univ. of New York, USA; ⁵ Element Six Ltd., UK. We demonstrate the deterministic creation of nitrogen-vacancy spin qubits at the mode maximum of diamond photonic crystal cavities, enhancement of the greater than 60, and NV spin phase coherence times exceeding 200µs.	Fu1B.2 • 08:30 Invited Record Small and Low Loss Slow Light Delay Lines and Dispersion Compensators, Misha Sumetskyl; 'Aston Univ., UK. Record small and low loss slow light optical signal processing devices are proposed and demonstrated using the recently invented Surface Nanoscale Axial Photonics (SNAP) technology.	 FTu1C.2 • 08:30 Propagation of Partially Coherent Electromagnetic Beams through Multilayered Stratified Media, Mayukh Lahiri', Emil Wolf^{1,2}, 'Physics and Astronomy, Univ. of Rochester, USA, 'Inst. of Optics, Univ. Optics, Univ.	Fu1D.2 • 08:30 Invited Electro-optic Effects in Silicon Waveguides, Heinrich Kurz ¹ ; 'AMO GmbH, Germany. The linear electro-optic effect in silicon waveguides introduced by strain gradients is analyzed. The symmetry of silicon is broken by specific Silicon- Nitride claddings resulting in remarkable high second order optical nonlinearties comparable to Lithium Niobate.	FTu1E.3 • 08:30 Surface Plasmon Polaritons and Visible Radia- tion Coupling in Dye Doped Liquid Crystal Cells with ZnSe Interlayers, Tingyu Xue', Hu Zhao', Cuiling Meng', Jiayin Fu', Jingwen Zhang'; 'Harbin Inst. of Technology, China. Surface plasmon polaritons excited in PM-597 doped 5CB liquid crystal cells sandwiched with ZnSe coated ITO glass plates proved to be responsible for several intriguing observations we made. Tentative physical picture of SPPs mediation based on electrostatic modification as proposed in this study. FTUEL4 • 08:45 Chtogonal and parallel lattice plasmons inthe SiO2/Au core-shell nanorod arrays, Linhan Lin', Yasha Yi'; 'Univ. of Michigan, USA. SiO2/Au core-shell nanorod arrays (NRAs) with high aspect ratio are reported, which support different lattice plasmon modes (LPMs). The diffraction induced dipolar coupling for these LPMs are studied here.
FTu1A.3 • 09:00 Solid State Nonlinear Optics for Entangled Coherent States, Andrew Fraine ¹ , Olga Minaeva ² , Abu Thomas ¹ , Alexander V. Sergien- ko ^{1,3} ; ¹ Department of Electrical and Computer Engineering, Boston Univ., USA; ² Department of Biomedical Engineering, Boston Univ., USA; ³ Department of Physics, Boston Univ., USA; Highly nonlinear solid-state systems are dis- cussed as solutions for the generation of phase entangled coherent states. Such states are necessary for many quantum optical informa- tion applications including a newly proposed quantum key distribution protocol.	FTu1B.3 • 09:00 Invited C Advanced Modulation Techniques for Optical Interconnects, Idelfonso Tafur Monroy'; 'Dan- marks Tekniske Universitet, Denmark. This talk will discuss advanced modulation techniques for optical interconnects.	Fu1C.4 • 09:00 Invited Miniature Steerable Optical Sources Beaming Photons with Angular Momentum, Guanghao Rui ¹ , Qiwen Zhan ¹ ; ¹ Electro-Optics Program, Univ. of Dayton, USA. We demonstrate the design, fabrication and testing of miniature steerable optical sources that are capable of beaming photons with spin and orbital angu- lar momentum through coupling nanoscale emitters to plasmonic waveguide and antenna structures.	FTu1D.3 • 09:00 Gigahertz Microring Electro-Optical Modula- tor in Hybrid Silicon and Lithium Niobate, Li Chen ¹ , Qiang Xu ¹ , Michael Wood ¹ , Ronald M. Reano ¹ ; 'Ohio State Univ., USA. We present a gigahertz electro-optical modulator based on a hybrid silicon and lithium niobate microring resonator. Digital modulation with an extinc- tion ratio greater than 3 dB is demonstrated up to 9 Gb/s.	FTu1E.5 • 09:00 Platinum Germanides for Long-wavelength Infrared Plasmonics, Nima Nader ^{1,2} , Shiva Vangala ^{1,2} , Daniel M. Wasserman ³ , William Streyer ³ , Joshua Hendrickson ² , Justin Cleary ² ; ¹ Solid State Scientific Corporation, USA; ² Sen- sors Directorate, Air Force Research Laboratory, USA; ³ Electrical and Computer Engineering, Univ. of Illinois, USA. PtxGe1-x compositions were formed by thermal-annealing. Plasmonic characteristics such as propagation length, loss, and mode confinement were determined from measured complex permittivities. Fabricated grating structures were characterized via LWIR reflection taken at multiple incident angles.

Join the conversation on Twitter. Use hashtag **#Fi014**. FTu1F • Optical Trapping and

Manipulation—Continued

Tucson Ballroom Salon B

Can extreme UV optical superoscillations be delivered

through a dielectric medium?, Yaniv Eliezer¹, Alon Bahabad¹;

¹Physical Electronics, Tel-Aviv Univ., Israel. We show theo-

retically and numerically that propagating a superoscillatory

signal containing extreme-uv superoscillations through the

absorbing resonance of an optically thick dielectric medium

leads to ordered revivals of the superoscillation.

FTu1G • General Optical Sciences I-

Tucson Ballroom Salon C

Tucson Ballroom Salon D

LS

LTu1H • Ultracold Gases III—Continued

Clusters and Cascades: Vortex Motion in 2D Quantum

Turbulence, Ashton Bradley¹; ¹Univ. of Otago, New Zealand.

Two-dimensional quantum vortex motion provides a minimal

system exhibiting fluid turbulence. Quantum analogues of

the classical inverse energy cascade and macroscopic energy

condensation processes in 2d will be presented and linked

LTu1H.2 • 08:30 Invited

to recent experimental work.

LTu11 • Semiconductor Nanooptics II— Continued

LTu11.2 • 08:30 Invited

Semiconductor Quantum Light Sources for Integrated Quantum Photonic Applications, Peter Michler¹; ¹Inst. of Semiconductor Optics and Functional Interfaces, Univ. of Stuttgart, Germany. We present a quantum dot based ondemand source of indistinguishable and entangled photon pairs. Furthermore, monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources is demonstrated.

FTu1F.3 • 08:45 D

Micro-rotation Through Indirect Manipulation of Absorbing Objects, Catherine Herne¹, Michael A. Senatore²; ¹Physics and Astronomy, SUNY New Paltz, USA; ²Physics and Astronomy, Colgate Univ., USA. We show the enhanced rotation of opaque graphite through adhesion with optically trapped silica spheres. Absorbing graphite is rotated through orbital angular momentum transfer from a Laguerre-Gauss mode and trapped due to the refracting spheres.

FTu1F.4 • 09:00 D

Asymmetric Imaging of a Linear Diode Bar for an Optical Cell Stretcher, Kevin B. Roth', Keith B. Neeves', Jeff Squier³, David W M Marri', 'Chemical and Biological Engineering Department, Colorado School of Mines, USA; 'Department of Physics, Colorado School of Mines, USA; To simplify optical cell stretcher implementation, we demonstrate a novel anamorphic imaging technique for linear diode laser sources. With this, observed red blood cell stretch is comparable to values found with traditional high-NA optics.

FTu1G.4 • 08:45

FiO

Continued

FTu1G.3 • 08:30

Stabilized Semiconductor Optical Frequency Comb with Programmable Intracavity Dispersion Compensation, Anthony Klee¹, Kristina Bagnell¹, Peter Delfyetl¹; ¹Univ. of *Central Florida, CREOL, USA.* We demonstrate a modelocked semiconductor laser producing a stabilized frequency comb. An intracavity spectral processor allows for programmable spectral phase adjustment for maximum bandwidth while maintaining a Pound-Drever-Hall lock to an intracavity Fabry-Pérot etalon.

FTu1G.5 • 09:00

Beam Deflection Measurements of Transient Nonlinear Refraction from Coherent Rotational Revivals in Air, Matthew Reichert¹, Peng Zhao¹, Jennifer M. Reed¹, Trenton R. Ensley¹, David J. Hagan¹, Eric W. Van Stryland¹; ¹Unix, of *Central Florida, CREOL, USA*. We apply the beam deflection technique to measure the transient nonlinearity of air well below filamentation threshold with unprecedented sensitivity at 1atm. Rotational contributions of N₂ and O₂ were resolved over 300 ps of delay.

LTu1H.3 • 09:00 Invited

Phase Slips and Weak Links: Experiments with Superfluid Atom Circuits, Gretchen K. Campbell'; 'Joint Quantum Inst., NIST and the Univ. of Maryland, USA. In recent experiments with a ring-shaped Bose Einstein condensate, we have directly measured resistive flow across a weak link. In addition, we have also developed a new technique to directly measure the current-phase relationship of weak links.

LTu11.3 • 09:00 Invited

Optical Control of Electron and Nuclear States, Duncan G. Steel¹; ¹Physics/EECS, Univ. Michigan, USA. Data shows that coherent optical interactions can control both the electronic and nuclear spin states in single and coupled quantum dots to. Measurements report on various quantum parameters associated with these states and their interaction.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FTu1A • Integrated Quantum Optics I—Continued	FTu1B • Optical Interconnections for Data Centers—Continued	FTu1C • Coherence, Interference, and Polarization III—Continued	FTu1D • Modulators—Continued	FTu1E • Materials for Plasmonics—Continued
FTu1A.4 • 09:15 Macroscopic entanglement based on weak Kerr nonlinearties, Tian Wang ^{1,2} , Farid Ghooba- di ¹ , Honwai Lau ¹ , Christoph Simon ¹ ; ¹ Physics and Astronomy, Univ. of Calgary, Canada; ² Physics, Cornell Univ., USA. We proposed and analyzed a new class of macroscopic entangled states base on weak cross Kerr phase shift, which is robust under noisy conditions, and has the potential to be verified experimentally.			FTu1D.4 • 09:15 Broadband Low-power Optical Modulator Based on Electro-optic Polymer Infiltrated Silicon Slot Photonic Crystal Waveguide, Xingyu Zhang', Amir Hosseini ² , Harish Subbara- man ² , Jingdong Luo ³ , Alex Jen ³ , Robert Nelson ⁴ , Ray T. Chen ¹ ; ¹ Univ. of Texas at Austin, USA; ² Omega Optics, Inc., USA; ³ Univ. of Washington, USA; ⁴ Air Force Research Laboratory, USA. We demonstrate a broadband, low-dispersion, sub-volt and compact optical modulator based on electro-optic polymer infiltrated silicon slot photonic crystal waveguide. Modulation up to 43GHz, VTI×L=0.282V×mm, and optical band- width of 8nm are experimentally demonstrated.	FTu1E.6 • 09:15 C Anomalous Transmission of Ag/ZnO Nano- composites Prepared by a Magneto-sputter- ing, Igor V. Melnikov ^{1,2} , Joseph W. Haus ³ , Dmitry Gromov ¹ , Alexey Shuliatyev ¹ , Andrey Mironov ² , Andrey Machnev ¹ , Vladimir Mitrokhin ⁴ ; 'Elec- tronic Materials, National Research Univ. of Electronic technology, Russian Federation; 'Electrical and Computer Engineering, Univ. of Illinois, USA; ³ LADAR and Optical Communica- tions Inst., Univ. of Dayton, USA; 'Research Center for Photochemistry of the RAS, Russian Federation. Nanostructures formed as a single layer and double layers of Ag clusters covered with ZnO are produced by subsequent mag- neto-sputtering and annealing procedures. All annealed samples display both surface plasmon resonance and anomalous transmission from near- through mid-IR.
FTu1A.5 • 09:30 Phase Matching and Frequency Mixing of Contra-propagating Electromagnetic Waves in Carbon Nanoforest, Alexander K. Popov ¹ , Sergey A. Myslivets ² , Igor S. Nefedov ³ ; ¹ Birck Nanotechnology Center, Purdue Univ., USA; ² Coherent Optics, L.V. Kirensky Inst. of Physics, Siberian Branch of the Russian Academy of Sci- ences, Russian Federation; ³ Aalto Univ., Finland. We show that particular spatial distributions of carbon nanotubes enables extraordinary nonlinear-optical propagation processes com- monly attributed to negative-index metama- terials. The possibility of great enhancement of frequency conversion is demonstrated with numerical simulations.	FTu1B.4 • 09:30 Invited Efficient Interconnection for Modern Com- puting Systems, Odile Liboiron-Ladouceur ¹ ; ¹ Electrical and Computer Engineering, McGill Univ., Canada. Direct replacement of point-to- point electrical links with optics in servers and large computing systems (e.g., datacenters) is not necessarily energy-efficient. Alternative approaches and recent experimental develop- ment will be discussed towards more efficient interconnection networks.	FTu1C.5 • 09:30 Trajectory-based unveiling of angular momen- tum of photons, Yongnan Li ¹ , Lingjun Kong ¹ , Zhicheng Ren ¹ , Chenghou Tu ¹ , Huitian Wang ^{1,2} ; 'School of physics, Nankai Univ., China; ² Na- tional Laboratory of Solid State Microstructures, Nanjing Univ., China. In this talk, we devote to explore the the average photon trajectories (APTs) under the paraxial circumstance. The results reveal that the SAM and the OAM result both in the helical three-dimensional APTs.	FTu1D.5 • 09:30 Ultralow switching energy germanium electro-optical modulator, Julian Sweet ^{1,2} , Joshua Hendrickson ¹ , Richard Soref ¹ ; ¹ Air Force Research Laboratory, USA; ² Wyle, USA; ³ Depart- ment of Physics & Engineering Program, Univ. of Massachusetts Boston, USA. A lateral p-n junction nanobeam electro-optic modulator for the 8 micron regime is presented. Owing to a strong free-carrier absorption effect, an ultralow switching energy is achieved, while utilizing a small footprint, monolithic, and VLSI-compatible implementation.	FTu1E.7 • 09:30 D Ultrathin and Smooth Silver Film by Alumi- num-doping and Applications in Plasmonics and Meta-materials, Cheng Zhang ¹ , Long Chen ¹ , L. Jay Guo ¹ ; 'Univ. of Michigan, USA. Wetting-layer-free, ultra-thin and smooth Silver film is achieved by doping Aluminum in Ag film deposition. Hyperbolic meta-material using Al- doped Ag films shows high transmittance and homogeneous response.
FTu1A.6 • 09:45 Multi-mode fibre correction for applications in optomechanics using a digital micromir- ror device, Miguel A. Preciado ¹ , Michael Mazilu ¹ , Kishan Dholakia ¹ ; 'School of Physics and Astronomy, Univ. of St Andrews, UK. We discuss the development of a digital micromir- ror based adaptive optical system that corrects for the propagation of coherent light through multimode fibres with the aim to achieve optical trapping in vacuum.		FTu1C.6 • 09:45 Measurement of orbital angular momentum and topological charge in optical vortices with shaped vortex cores, Anderson M. Amaral', Edilson L. Falcão-Filho', Cid B. de Araújo'; 'Universidade Federal de Pernambuco, Brazil. Optical vortices (OV) with shaped vortex cores can extend the applicability of OV, but are not well characterized by usual methods. We describe and experimentally demonstrate how shaped OV may be characterized, based on the definitions of classical orbital angular momen- tum and topological charge.	FTu1D.6 • 09:45 Semiconductor-Based Linear Intensity Modu- lator with Spur Free Dynamic Range of 105 dB.Hz2/3, Edris Sarailou ¹ , Abhijeet Ardey ¹ , Peter Delfyett ¹ ; ¹ Univ. of <i>Central Florida, CREOL,</i> USA. A 105 dB.Hz2/3 spur free dynamic range (SFDR) is achieved from a semiconductor-based intensity modulator. This has been realized by introducing an injection-locked passively mode-locked laser into one of the arms of a Mach-Zehnder interferometer.	FTu1E.8 • 09:45 Femtosecond nonlinear optical response of metal - oxide hybrid nanosystems, Hayk Harutyunyan ¹ , Gary Wiederrecht ¹ ; 'Argonne National Laboratory, USA. By designing and fabricating metal-oxide hybrid nanosystems with ultra-high field enhancements we demonstrate femtosecond dynamics of Kerr-type nonlinear optical response.
	10:00-10:30 Coffee Brea	k and Unopposed Exhibit Only Time, A	Arizona Ballroom, Salons 1-7	

10:00–16:00 Exhibit Open, Arizona Ballroom, Salons 1-7

50

Tuesday, 21 October

Tucson Ballroom Salon A	Tucson BallroomTucson BallroomSalon ASalon B		Tucson Ballroom Salon D
F	iO	L	S
FTu1F • Optical Trapping and Manipulation—Continued	FTu1G • General Optical Sciences I— Continued	LTu1H • Ultracold Gases III—Continued	LTu11 • Semiconductor Nanooptics II— Continued
FTuFE5 • 09:15 Force Spectroscopy in the Bloodstream of Live Embryonic Zebrafish with Optical Tweezers, Bryce W. Schroder ¹ , Bren- nan M. Johnson ¹ , Deborah M. Garrity ² , Lakshmi P. Dasi ^{1,3} , Diego Krapf ^{1,4} ; ¹ School of Biomedical Engineering, Colorado State Univ., USA; ² Department of Biology, Colorado State Univ., USA; ³ Department of Mechanical Engineering, Colo- rado State Univ., USA; ⁴ Department of Electrical and Com- puter Engineering, Colorado State Univ., USA. Fluid forces in vivo are difficult to measure and key to understanding the mechano-biology of cardiovascular development. Optical tweezers force spectroscopy has been implemented in live zebrafish embryos during the first stages of blood circulation.	FTu1G.6 • 09:15 Measurement of the Second Order Coherence of Pseudo- Thermal Light in the Azimuthal Degree of Freedom, Robert M. Cross ¹ , Omar S. Magana Loaiza ² , Mohammad Mirhosseini ² , Robert W. Boyd ^{2,3} ; ¹ Department of Physics & Astronomy, Univ. of Rochester, USA; ² The Inst. of Optics, Univ. of Rochester, USA; ³ Department of Physics, Univ. of Ottawa, Canada. Using an angular version of the Hanbury Brown Twiss interferometer, we show for the first time second-order interference in the azimuthal degree of freedom, which exhibits higher resolution fringes than if coherent light were used.		
FTu1F.6 • 09:30 Invited D Do Holographic Optical Tweezers Work for Large Swim- ming Micro-Organisms?, Monika A. Ritsch-Marte ¹ ; Innsbruck Medical Univ., Austria. Trapping increasingly large particles by holographic optical tweezers requires more laser power, ultimately causing problems for biological specimens. We show how living micro-organisms can be handled safely and precisely by combining optical and acoustic forces.	FTu1G.7 • 09:30 Rotation-induced Asymmetry of Far-field Emission from Optical Microcavities, Li Ge ^{1,2} , Raktim Sarma ³ , Hui Cao ³ , ¹ Engineering Science and Physics, College of Staten Island, CUNY, USA; ² The Graduate Center, CUNY, USA; ³ Department of Applied Physics, Yale Univ., USA. We study rotation- induced asymmetry of far-field emission from optical micro- cavities, based on which a new scheme of rotation detection may be developed. It is free from the "dead zone" caused by the frequency splitting of standing-wave resonances at rest, in contrast to the Sagnac effect.	LTu1H.4 • 09:30 Invited Quantum Vortex Microscope for Observing Two-dimen- sional Vortex Dynamics in Bose-Einstein Condensates, Kali E. Wilson', Joseph Lowney', Zachary Newman', Brian P. An- derson'; 'College of Optical Sciences, Univ. of Arizona, USA. We have demonstrated in-situ detection of two-dimensional vortex distributions in a single-component Bose-Einstein condensate. We discuss development of the next generation quantum vortex microscope and implications for observations of superfluid dynamics.	LTu11.4 • 09:30 Invited Quantum-dot Microcavity Lasers with Superradiant Coupling and Non-classical Light Emission, Frank Jahnke ¹ 'Inst. for Theoretical Physics, Univ. of Bremen, Germany For the light emission of an ensemble of semiconducto quantum dots inside a three-dimensional optical resonato we identify superradiant coupling effects leading to a giant photon bunching. Results are confirmed within a direct theory-experiment comparison.
	FTu1G.8 • 09:45 Davydov splitting in triplet excitons of tetracene single crystals, Heinrich Schweere ¹ , Zephania Birech ^{1,2} ; ¹ Laser research Inst., Department of physics, Univ. of Stellenbosch, South Africa; ² Physics, Univ. of Nairobi, Kenya. This work re- ports room temperature Davydov splitting of 0.04 eV (286 cm -1) in triplet transitions of tetracene single crystals obtained through femtosecond transient absorption spectroscopy with polarized probing of the (ab) face of a 300 nm thick crystal.		

10:00–10:30 Coffee Break and Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7

10:00–16:00 Exhibit Open, Arizona Ballroom, Salons 1-7

Tuesday, 21 October

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
10:30–12:00 Tu2A • Integrated Quantum Optics II Presider: Liang Jiang; Yale Univ., USA	10:30–12:00 FTu2B • Optical Fiber Sensors I Presider: Fabrizio Di Pasquale; Scuola Superiore Sant Anna di Pisa, Italy	10:30–12:15 FTu2C • Wavefront Sensing and Adaptive Optics Presider: John Koshel; Univ. of Arizona, USA	10:30–12:00 FTu2D • Integrated Photonic Quantum Circuits Presider: Heinrich Kurz; AMO GmbH, Germany	10:30–12:00 FTu2E • Parity-time Symmetry and Photonic Lattices Presider: Mahmoud Rasra; Bell Labs, Alcatel-Lucent, USA
ETUZA.1 • 10:30 Invited D Experimental Boson Sampling with Integrated Photonics, Fabio Sciarino ¹ ; ¹ Universita degli Studi di Roma La Sapienza, Italy. A Boson Sam- oling device is a specialized quantum computer hat solves a problem which is strongly believed o be computationally hard for classical comput- ers. We report its implementation and validation with integrated photonics.	FTu2B.1 • 10:30 Invited Bragg Grating Sensors for Extreme Tem- perature Applications, John Canning ¹ ; ¹ Univ. of Sydney, Australia. Fibre Bragg gratings for high temperature operation are reviewed. The role of thermal stabilization and regeneration are discussed. The operating temperature can be fine tuned by a variety of processes ultimately all connected by the control of relaxation processes on a sub-micron scale.	FTu2C.1 • 10:30 Invited Transverse Translation Diversity in Image- Based Wavefront Sensing, James R. Fienup ¹ , Dustin Moore ¹ ; ¹ Univ. of Rochester, USA. Translation diversity provides an alternative to traditional defocus-diverse image-based wave- front sensing. Both methods are accurate and require little additional hardware, but translation diversity, also called ptychography, is sometimes more readily available and robust.	FTu2D.1 • 10:30 Invited Laser-written Integrated Photonic Quantum Gircuits, Rene Heilmann ¹ , Markus Gräfe ¹ , Ar- mando Perez-Leija ¹ , Stefan Nolte ¹ , Alexander Szameit ¹ ; 'Inst. of Applied Physics, Friedrich Schiller Univ., Germany. We report on integrated photonic quantum circuits using laser-written waveguides with complex three-dimensional waveguide architectures for using multiple degrees of freedom, such as diffraction control and birefringence.	FTu2E.1 • 10:30 Invited PT Symmetry in Optics, Demetrios N. Christo- doulides ¹ , Mohammad-Ali Miri ¹ , Hossein Hodaei ¹ , Matthias Heinrich ¹ , Mercedeh Khaja- vikhan ¹ ; ¹ Univ. of Central Florida, USA. Optical parity-time (PT)-symmetric structures utilize gain and loss in a balanced fashion in order to achieve a desired functionality. Here, we review recent developments in the newly emerging fields of PT-symmetric and supersymmetric optics.

FTu2A.2 • 11:00

Direct Generation of Orthogonally Polarized Photon Pairs via Spontaneous Non-Degenerate FWM on a Chip, Christian Reimer¹, Lucia Caspani¹, Yoann Jestin¹, Matteo Clerici^{1,2}, Marcello Ferrera^{1,2}, Marco Peccianti^{1,3}, Alessia Pasquazi^{1,3}, Brent Little⁴, Sai Chu⁵, David Moss⁶, Roberto Morandotti¹: ¹INRS-EMT, Canada: ²School of Engineering and Physical Sciences, Heriot-Watt Univ., UK; 3Department of Physics and Astronomy, Univ. of Sussex, UK: 4Xi'an Inst. of Optics and Precision Mechanics, Chinese Academy Of Sciences, China; ⁵Department of Physics and Material Science, City Univ. of Hong Kong, China; 'School of Electrical and Computer Engineering, RMIT Univ. Melbourne, Australia. Orthogonally polarized photon pairs are directly generated on a CMOS-compatible chip via spontaneous non-degenerate fourwave-mixing between orthogonally polarized pumps, enabled by suppressing stimulated processes. Photon coincidences and optical parametric oscillation are measured.

FTu2B.2 • 11:00 D

In-Line Fiber-Optic Viscometer for Internal Combustion Engine Lubricant Oils, Maira Alejandra Calle Casas², Yamile Cardona Maya¹, Cesar Isaza³, Pedro Torres¹; ¹Escuela de Física, Universidad Nacional de Colombia, Colombia; ²Escuela de Ingeniería de Sistemas, Universidad Nacional de Colombia, Colombia; ³Escuela de Materiales y Minerales, Universidad Nacional de Colombia, Colombia. In this work we present an in-line fiber-optic viscometer for internal combustion engine lubricant oils. The sensing probe is a SM-SM fiber configuration formed by splicing two sections of uncoated SM fibers with a lateral offset.

FTu2C.2 • 11:00

Extending the Capture Range of Phase Retrieval through Random Starting Parameters, Dustin Moore¹, James R. Fienup¹; 'Univ. of *Rochester, USA*. Probability of convergence of a high noise wavefront sensing experiment is assessed statistically to understand the capture range, ensemble convergence properties and behavior with respect to the degrees of freedom allowed during the search.

FTu2D.2 • 11:00 Invited

Development of Photon Pair Sources Using Periodically Poled Lithium Niobate (PPLN) Waveguides and Fiber Optic Components, Lee Oesterling', Don Hayford', David Nippa', Rick Wolterman'; 'Battelle Memorial Inst., USA. We developed a photon pair source that consists of fiber optic components and a periodically poled lithium niobate crystal with integrated waveguides. Photon pair coincidence count experiments were performed, and a heralding efficiency of 68% was measured.

FTu2E.2 • 11:00

Observation of self-trapping and rotation of higher-gap quadruple-like lattice solitons, Shiqiang Xia¹, Yuanyuan Zong¹, Daohong Song¹, Liqin Tang¹, Zhigang Chen^{1,2}; 'TEDA Applied Physics Inst. and School of Physics, Nankai Univ, China; ²Department of Physics and Astronomy, San Francisco State Univ., USA. We demonstrate self-trapping and self-rotation of quadruple-like gap solitons by single-site excitation in 2D photonic lattices under self-frousing nonlinearity. Such a self-trapped soliton cluster resides in the 2nd Bragg reflection band gap.

Tucson Ballroom Salon A Tucson Ballroom Salon B

FiO

10:30–12:00 FTu2F • General Optics in Biology and Medicine I

Presider: Zhongping Chen; Univ. of California Irvine, USA

FTu2F.1 • 10:30 D

Optically Detected Magnetic Resonance of Blinking Nanodiamonds Under a Polarisation Microscope, Martina Barbiero¹, Xiangping Li¹, Ye Chen¹, Stefania Castelletto^{2,1}, Min Gu¹, 'Faculty of Science, Engineering and Technology, Swinburne Univ. of Technology, Australia; 'School of Aerospace, Mechanical and Manufacturing Engineering, RMIT Univ., Australia. We report on the investigation of optically detected magnetic resonance of nitrogen-vacancy centres in nanodiamonds exhibiting fluorescence intermittence through polarization microscopy. Applying this feature for super-resolution imaging of nanodiamond incorporated HeLa cells has been demonstrated.

FTu2F.2 • 10:45 D

Application of computer vision technique with fluorescence imaging spectroscopy to differentiate citrus diseases, Caio Bruno Wetterich¹, Luis G. Marcasa¹, José B. Junior²; ¹Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Brazil; ²Departamento de Fitopatologia e Nematologia, Universidade de Sao Paulo, Brazil. We have used fluorescence imaging spectroscopy to investigate citrus diseases. Texture features were extracted and used as input into classifier. Results show that it is possible differentiate the diseases that have similar symptoms.

FTu2F.3 • 11:00 D

Optical Coherence Tomography and Scanning Laser Ophthalmoscopy: Approaches to Dual-channel Retinal Tissue Imaging, Manuel J. Marques¹, Adrian Bradu¹, Adrian G. Podoleanu¹; 'Applied Optics Group, School of Physical Sciences, Univ. of Kent, UK. We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo, with various degrees of simultaneity. 10:30–12:00 FTu2G • General Optical Sciences II Presider: Igor Jovanovic; Pennsylvania State Univ., USA

FTu2G.1 • 10:30 D

Spectral Changes Induced by a Phase Modulator Acting as a Time Lens, Brent Plansinis¹, William R. Donaldson², Govind Agrawal¹; ¹Inst. of Optics, Univ. of Rochester, USA; ²Laboratory for Laser Energetics, Univ. of Rochester, USA. We show that a phase modulator, acting as a time lens inside a temporal imaging system, can induce spectral broadening, narrowing, or shifts depending on the phase of sinusoidal clock, without requiring any nonlinear effects.

FTu2G.2 • 10:45 D

Elliptic Light Absorber: Trapping Light Between Two Foci, Ludmila J. Prokopeva^{1,2}, Alexander Kildishev¹; ¹Purdue Univ., USA; ²Novosibirsk State Univ., Russian Federation. We propose a class of omnidirectional cylindrical concentrators collecting light between two foci. Our ray-tracing and full-wave simulations of elliptic cylinder absorbers show flawless perfor-mance at all acceptance angles. Extension to spheroidal geometry is possible.

FTu2G.3 • 11:00 D

Electrical Detection of Photonic Spin Hall Effect on Metasurfaces, Xingjie Ni¹, Sui Yang^{1,2}, Jun Xiao¹, Yuan Wang¹, Xiang Zhang^{1,2}; ¹Nanoscale Science and Engineering Center, Univ. of California, Berkeley, USA; ²Materials Science Division, Lawrence Berkeley National Laboratory, USA. Strong spin-orbit interaction can be induced by lightbending metasurfaces. We show that the resulting photonic spin Hall effect can be detected electrically on a conductive metasurface by measuring the electrical current transverse to light bending direction. Tucson Ballroom Salon C

10:30-12:00

LTu2H • Attosecond Science I Presider: Ming-Chang Chen; National Tsing Hua Univ., Taiwan

LTu2H.1 • 10:30 Invited

Probing Atomic and Molecular Processes by Intense Attosecond Pulses, Katsumi Midorikawa¹; ¹*RIKEN Center for Advanced Photonics, Japan.* Two-photon dissociative ionization processes of simple molecules are investigated by attosecond nonlinear Fourier transformation spectroscopy. The frequency resolved momentum images of the fragment ions reveal ultrafast dissociative ionization dynamics of molecules.

10:30-12:00

LS

LTu2I • Quantum Information I Presider: Francisco Becerra Chavez: Univ. of

New Mexico, USA

Tucson Ballroom

Salon D

LTu2I.1 • 10:30 Invited

Raman Memories for Synchronized Quantum Photonics, Joshua Nunn¹; ¹Physics, Univ. of Oxford, UK. Optical memories based on Raman scattering operate at room temperature, with high bandwidths, and could enable active synchronization of probabilistic operations in a photonic quantum computer. Here we review progress towards quantum-limited Raman memories.

LTu2H.2 • 11:00 Invited

Attosecond Electronic Band Dynamics, Stephen R. Leone¹; ¹Univ. of California Berkeley, USA. High harmonic extreme ultraviolet pulses are used to investigate time dynamics in oxide materials and conduction bands by probing the metal edges following pulsed visible excitation of carriers across the band gap.

LTu2I.2 • 11:00 Invited

Practical Limits of an Optimized Quantum Receiver, Christoph Marquardt^{1,2}, Christian R. Müller^{1,2}, Gerd Leuchs^{1,2}; ¹Max Planck Inst. for the Science of Light, Germany; ²Department of Physics, Univ. of Erlangen-Nuremberg, Germany. We present a quantum receiver for the discrimination of quadrature phase-shift keyed signals that approaches the Helstrom bound for any signal power and discuss the influence of practical limitations.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FTu2A • Integrated Quantum Optics II—Continued	FTu2B • Optical Fiber Sensors I— Continued	FTu2C • Wavefront Sensing and Adaptive Optics—Continued	FTu2D • Integrated Photonic Quantum Circuits—Continued	FTu2E • Parity-time Symmetry and Photonic Lattices—Continued
FTu2A.3 • 11:15 Plasmonic Metasurfaces for the Generation of Optical Orbital Angular Momentum, Sebastian A. Schulz ¹ , Ebrahim Karimi ¹ , Israel De Leon ¹ , Frederic Bouchard ¹ , Hammam Qassim ¹ , Jeremy Upham ¹ , Robert W. Boyd ^{1,2} ; ¹ Department of Physics, Univ. of Ottawa, Canada; ² Inst. of Optics, Univ. of Rochester, USA. We demonstrate the generation of optical orbital angular momentum at visible wavelengths through spin-to-orbit coupling in an ultrathin plasmonic metasurface. Such metasurfaces enable the efficient generation and control of structured light in compact geometries.	FTu2B.3 • 11:15 Fiber Optic Methane Sensor Utilizing Ag/ CNT Thin Films, Satyendra K. Mishra ¹ , Sand- eep N. Tripathi ² , Veena Chaudhary ² , Banshi D. Gupta ¹ ; 'Indian Inst. of Technology, Delhi, India; ² Centre for Polymer Science and Engineering, Indian Institute of Technology, India. Fabrica- tion and characterization of a surface plasmon resonance based fiber optic methane sensor using films of silver and carbon nanotube have been carried out. The sensor works up to 100 ppm concentration of the gas.	FTu2C.3 • 11:15 Optimization of Nonlinear Phase Retrieval, Jen-Tang Lu ¹ , Chien-Hung Lu ¹ , Jason W. Fleischer ¹ ; ¹ Department of Electrical Engineer- ing, Princeton Univ., USA. We optimize the performance of phase retrieval using spatial nonlinearity. We find an experimentally measur- able convergence criterion, given by a nonlinear strength in which the correlation between linear and nonlinear output amplitude is zero.		FTu2E.3 • 11:15 O Observation of supersymmetric dynamics in photonic lattices, Mohammad-Ali Miri ¹ , Simon Stuetzer ² , Matthias Heinrich ¹ , Ramy El-Ganainy ³ , Stefan Nolte ² , Demetrios N. Christodoulides ¹ , Alexander Szameit ² ; ¹ Univ. of Central Florida, USA; ² Inst. of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit at Jena, Germany; ³ Max Planck Inst. for the Physics of Complex Systems, Germany. We present the first experimental realization of supersymmetric optical structures based on laser-written pho- tonic lattices. We show that a supersymmetric ladder of optical waveguides can be used for efficient mode conversion.
FTu2A.4 • 11:30 Second Optical Harmonic Generation in Photonic Crystal Structures Infiltrated with NaNO2, Kirill I. Zaytsev ¹ , Egor Yakovlev ¹ , Gleb M. Katyba ¹ , Irina N. Fokina ¹ , Stanislav O. Yurchenko ¹ ; ¹ Bauman Moscow State Technical Univ., Russian Federation. Enhanced second harmonic generation (SHG) in photonic crys- tals (PC) is shown via numerical simulation of the light interactions with the PC and verified experimentally by studying of SHG in synthetic opal PC infiltrated with NaNO2.	FTu2B.4 • 11:30 Invited D Distributed Fibre Optic Sensing Techniques for Soil Slope Monitoring, Luigi Zeni ^{1,3} , Luciano Picarelli ² , Biagio Avolio ² , Agnese Coscetta ¹ , Raf- faele Papa ² , Giovanni Zeni ³ , Caterina Di Maio ⁴ , Roberto Vassallo ⁴ , Aldo Minardo ¹ ; 'Industria & Information Engineering, Second Univ. of Naples, Italy; ² DICDEA, Second Univ. of Naples, Italy; ³ Inst. for Electromagnetic Sensing of the Environment, National Research Council - CNR, Italy; ⁴ School of Engineering, Univ. of Basilicata, Italy. Distributed optical fiber sensors, based on Brillouin scattering, are exploited to directly measure the deformation profiles of soil and to realize innovative inclinometers to monitor the stability of slonges and identify early symptoms	FTu2C.4 • 11:30 Design and Actuator-Position Optimization for a Large-Scale Adaptive Grating, Jie Qiao ¹ , Xiang Liu ² , 'Center for Imaging Science, Rochester Inst. of Technology, USA; ² Inst. of Optics, Univ. of Rochester, USA. The design and optimization of the actuator layout for a 1.5-meter scale adaptive grating was performed using an integrated finite-element-analysis and genetic-optimization model. The optimization process, criteria, and an optimized design will be presented.	FTu2D.3 • 11:30 Control of non-classical interference in a 3D multipath interferometer on a chip, Zachary J. Chaboyer', Thomas Meany', Luke G. Helt', Michael J. Steel', Michael J. Withford'; 'Mac- quarie Univ., Australia. We present the first demonstration of quantum interferometry in an integrated, 3D interferometer. We control single and multi-photon interferences in the device using a thermo-optic phase shifter and predict Fisher information approaching a theo- retical maximum.	FTu2E.4 • 11:30 Adiabatical Optical Transition in Longitudi- nally Modulated Photonic Lattices, Bin Han ^{1,2} , Lei Xu ^{1,2} , Yiling Dou ^{1,2} , Jingjun Xu ^{1,2} , Guoquan Zhang ^{1,2} , ¹ School of Physics, Nankai Univ., China; ² TEDA Applide Physics Inst., Nankai Univ., China. We found that, at a specific resonant condition, novel effects such as negative refrac- tion and adiabatical optical transition between different bands can be achieved in longitudinally modulated photonic lattices.
FTu2A.5 • 11:45 On-Chip Nonlinear Injection Locking for Stable Frequency Comb Generation, Abhijeet Ardey', Edris Sarailou', Peter Delfyett'; 'CREOL, Univ. of Central Florida, USA. On-chip stabiliza- tion of a novel orthogonally coupled monolithic CPM semiconductor laser is presented with more than 14-times reduction in the RF linewidth and almost 5-times reduction in the optical linewidth of the CPM slave laser.	of landslides.	FTu2C.5 • 11:45 Invited Beaconless Tomographic Wave-Front Sens- ing, Michael Hart ¹ , James G. Nagy ² ; ¹ Univ. of Arizona, USA; ² Emory Univ., USA. We describe a technique to sense the 3-dimensional struc- ture of wave-front aberrations introduced by a volume effect such as atmospheric turbulence. The method images a scene through a microlens array and requires no cooperative beacons.	FTu2D.4 • 11:45 An elegant length tolerant design of wave- guide arrays for the generation of N-partite two photon W state, Surajit Paul', Krishna Thyagarajan'; 'Indian Inst. of Technology, Delhi, India. An elegant design of a waveguide ar- ray consisting of (2N-1) identical single mode optical waveguides is introduced to create 'N' partite two photon W state that illustrates much enhanced tolerance to the fabrication conditions and experimental perturbations.	FTu2E.5 • 11:45 Topological Optical Network in Honeycomb Lattice, Guanquan Liang ¹ , Yidong Chong ² ; 'In- dependent researcher, USA; ² School of Physical and Mathematical Sciences, Nanyang Tech- nological Univ., Singapore. We demonstrate the simulation of optical analog of topological edge states in honeycomb lattice composed of ring resonators. Three kinds of edges, zig-zag, armchair, and beard, support edge states for the same working frequency.
	12:00–13:30 U	nopposed Exhibit Only Time, Arizona I Iu3A • Joint Poster Session I. Arizona I	Ballroom, Salons 1-7 Ballroom, Salons 1-7	
	40.00.47.00 (12)			
	12:00–16:00 "N	lission ITL" USA Student Chapter Con	petition, Arizona Ballroom, Salons 1-7	
	12:30–14:00 O	SA Fellow Members Lunch, Tucson Ba	llroom, Salons G-I	

FiO LS Fu2F - Sensel Optics in Biology and Michigen E- General Optics in Storage Family in Sense Data (1998) Fu2F - General Optics Sciences II- Continued Tu2H - Attosecond Science II-Continued Tu2H - Ountum Information II-Continued Fu2F - 1135 Image: Sense Data (1998) Fu2F - 1136 Image: Sense Data (1998) Tu2H - Attosecond Science II-Continued Tu2H - Ountum Information II-Continued Fu2F - 1136 Image: Sense Data (1998) Fu2F - 1136 Fu	Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
FXF 118 FXF 318	Fi	iO	L	S
FAT: 11: 0 Construction C	FTu2F • General Optics in Biology and Medicine I—Continued	FTu2G • General Optical Sciences II— Continued	LTu2H • Attosecond Science I—Continued	LTu2I • Quantum Information I—Continued
 FUES 5 - 11.0 O FUES 5 - 11.	FTu2F.4 • 11:15 C Quantification of Adipocyte Area at Invasive Breast Tumor Margins and in Benign Stroma, Jessica Dobbs ¹ , Dongsuk Shin ¹ , Henry Kueren ² , Savitri Krishnamurthy ² , Wei Yang ² , Re- becca Richards-Kortum ¹ ; ¹ Bioengineering, Rice Univ., USA; ² The Univ. of Texas M.D. Anderson Cancer Center, USA. We performed quantitative measurement of adipocyte area in confocal microscopy images to evaluate adipocyte phenotype adjacent to and 2 mm (a narrow resection margin) away from invasive breast carcinoma and benign, fibrous breast tissue.	FTu2G.4 • 11:15 C Light-in-flight Imaging in Free-space Using Arrayed Single-photon Detector Technologies, Genevieve Gariepy ¹ , Nikola Krstajic ² , Robert Henderson ² , Chunyong Li ¹ , Robert Thomson ¹ , Gerald S. Buller ¹ , Jonathan Leach ¹ , Daniele Fac- cio ¹ ; ¹ Inst. of Photonics and Quantum Sciences, Heriot-Watt Univ., UK; ² Inst. for Integrated Micro and Nano Systems, Univ. of Edinburgh, UK. For the first time, light-in-flight measure- ments are made of laser pulses propa- gating in free space, using an array of Si CMOS single-photon avalanche diode detectors with picosecond timing resolution.		
Fu25.6 + 11:45 Fu25.6 + 11:45 Fu26.6 + 11:45 Fu26.	FTu2F.5 • 11:30 Gigapixel Whole-Body Microphotography, Daniel L. Marks ¹ , Jack G. Anderson ¹ , Zachary F. Phillips ¹ , Scott T. McCain ² , David J. Brady ^{1,2} , 'Duke Univ., USA; ² Aqueti, Inc., USA. Time- series whole-body microphotography may potentially be used for diagnosing skin disease, telemedicine, surgical field registration, and epidemiological studies. We demonstrate the technology by imaging a volunteer at 0.25 gigapixel resolution in a snapshot.	FTu2G.5 • 11:30 Polarization Dependent Optical Forces on Chiral Micro- resonators, Maria Grazia Donato ¹ , J. Hernandez ² , Alfredo Mazzulla ³ , Clementina Provenzano ² , Rosalba Saija ⁴ , Maria Antonia lati ¹ , Alessandro Magazzu ^{1,4} , Pasquale Pagliusi ^{2,3} , Ro- berto Bartolino ^{2,3} , Pietro G. Gucciardi ¹ , Onofrio M. Marago ¹¹ , Gabriella Cipparrone ^{2,3} ; 'Istituto per i Processi Chimico-Fisici, CNR-IPCF, Italy; 'Physics Department, Univ. of Calabria, Italy; 'Istituto per i Processi Chimico-Fisici (UOS Cosenza), CNR-IPCF, Italy; 4Dipartimento di Fisica e Scienze della Terra, Università di Messina, Italy. We perform an investigation of the simultaneous optical trapping and rotation of chiral mi- roparticles. The coupling of linear and angular momentum, mediated by light spin and particle chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques.	LTu2H.3 • 11:30 Attosecond Probing of Charge Transfer Reactions in Polyatomic Molecules, Henry Timmers ¹ , Marc Bourgeois ¹ , Ni- ranjan Shivaram ¹ , Arvinder Sandhu ¹ , Zheng Li ² , Robin Santra ² , Oriol Vendrell ² ; ¹ Physics, Univ. of Arizona, USA; ² Center for Free-Electron Laser Science, DESY, Germany. We investigate the coherent motion of an electron hole wavepacket near a conical intersection in CO2. These results demonstrate the sensitivity of attosecond, XUV sources in probing and control- ling charge transfer dynamics occurring in nature.	LTu2I.3 • 11:30 Invited Bidirectional and Efficient Conversion Between Micro- wave and Optical Light, Cindy Regal ¹ , Reed Andrews ¹ , Robert Peterson ¹ , Thomas Purdy ¹ , Katarina Cicak ² , Ray- mond Simmonds ² , Konrad Lehnert ^{1,2} ; 'Univ. of Colorado at Boulder JILA, USA; ² NIST, USA. We demonstrate efficient mechanically-mediated transduction between microwave and optical signals using a micromechanical SiN membrane. This interface has the potential to transform information between these vastly different frequencies while maintaining a fragile quantum state.
12:00–13:30 Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7 JTu3A • Joint Poster Session I, Arizona Ballroom, Salons 1-7 12:00–16:00 "Mission IYL" OSA Student Chapter Competition, Arizona Ballroom, Salons 1-7 12:30–14:00 OSA Fellow Members Lunch, Tucson Ballroom, Salons G-I	FTu2F.6 • 11:45 Study for the Clinical Implantation of Photodynamic Therapy applied to Squamous Cell Carcinoma, Irene Salas-Garcia ¹ , Felix Fanjul-Velez ¹ , Mihail Zverev ¹ , Jose L. Arce-Diego ¹ ; ¹ Universidad de Cantabria, Spain. This work presents the application of a predictive tool to assess and adjust the current Photodynamic Therapy dosimetry in order to support its future clinical implantation for the treatment of squamous cell carcinoma.	FTu2G.6 • 11:45 Null-field Radiationless Sources, Elisa Hurwitz ¹ , Gregory J. Gbur ¹ ; ¹ Optical Science and Engineering, UNC Charlotte, USA. It is shown that it is in principle possible to produce radiationless electric-magnetic sources with any of the four microscopic or macroscopic electromagnetic fields exactly zero. Implications for invisibility optics are discussed.	LTu2H.4 • 11:45 Attosecond Transient Absorption: Spectral Lineshapes in Laser-dressed Atoms and Molecules, Chen-Ting Liao ¹ , Henry Timmers ² , Arvinder Sandhu ^{1,2} , ¹ College of Optical Sci- ences, Univ. of Arizona, USA, ² Department of Physics, Univ. of Arizona, USA. We experimentally investigated the laser- dressed excited states of atoms and molecules via attosecond XUV transient absorption. We observed the lineshapes evolu- tion and modifications due to the laser-imposed phases, as well as the macroscopic propagation effects.	
12:00–16:00 "Mission IYL" OSA Student Chapter Competition, Arizona Ballroom, Salons 1-7 12:30–14:00 OSA Fellow Members Lunch, Tucson Ballroom, Salons G-I		12:00–13:30 Unopposed Exhibit (JTu3A • Joint Poster	Only Time, Arizona Ballroom, Salons 1-7 Session I, Arizona Ballroom, Salons 1-7	
12:30–14:00 OSA Fellow Members Lunch, Tucson Ballroom, Salons G-I		12:00–16:00 "Mission IYL" OSA St	udent Chapter Competition, Arizona Ballroom, S	Salons 1-7
		12:30–14:00 OSA Fellow Member	rs Lunch, Tucson Ballroom, Salons G-I	

Tuesday, 21 October

JOINT FIO/LS

12:00-13:30 JTu3A • Joint Poster Session I

JTu3A.1

Generation and Detection of Terahertz Waves by Photoconductive Antennas, Andres F. Escobar

Mejia¹, Jorge O. Tocho¹; ¹Centro de Investigaciones Opticas, Argentina, The point where laser focus on the photoconductive antennas is an important factor to getting the best signal to noise ratio when THz waves must be generated or detected. Experimental results are compared with different models for the antennas, including two back side Schottky diodes.

JTu3A.2

Transient Newton rings in dielectrics upon fs laser ablation, Mario Garcia Lechuga¹, Jan Siegel¹, Javier Hernandez-Rueda¹, Javier Solis¹; ¹Laser Processing Group, Instituto de Optica. CSIC, Spain. We report the first observation of transient Newton rings in dielectrics (LiNbO3, sapphire and lead-oxide glass) during ablation with single fs laser pulses, which has important consequences for the comprehension of the ablation mechanisms in dielectrics.

JTu3A.3

Withdrawn.

JTu3A.4

Free Falling Trojan-like Wavepackets on Triangular Orbits in Magnetic and Electromagnetic Fields, Matt Kalinski¹; ¹Utah State Univ., USA. We discover that under the fine parameters tuning the free fall of the electron in the Coulomb, magnetic and the polarized electromagnetic fields results in the existence of non-dispersing wave packets moving on triangular trajectories.

JTu3A.5 Withdrawn.

JTu3A.6

Chirped Pulse Phase Conjugation, Alex Okulov¹; ¹A.M. Prokhorov General Physics Inst RAS, Russian Federation, Phase-locking of fiber laser set is analyzed. We formulate requirements to optical materials suitable for large mode area Yb photonic crystal fiber amplifiers and ultrafast wavefront reversing mirror for spatial combination of chirped optical pulses

JTu3A.7

Probing Atomic Structure with Carrier-Envelope Phase-Stable Few-Cycle Pulses in the Infrared, Henning Geiseler¹, Nobuhisa Ishii¹, Keisuke Kaneshima¹, Teruto Kanai¹, Jiro Itatani¹; ¹The Inst. for Solid State Physics, The Univ. of Tokyo, Japan. We constructed a light source for infrared carrierenvelope phase-stabilized few-cycle pulses. The application to strong-field ionization facilitates diffraction spectroscopy in broad energy ranges, which is demonstrated by extracting the elastic

JTu3A.8

Ultraviolet and Visible Laser Calorimetry of Single Crystal Microwave-assisted CVD Diamonds,

backscattering cross section of xenon.

Ying Chen¹, Scott Webster¹, Giorgio Turri¹, Seyfollah Toroghi¹, Pieter G. Kik¹, Benjamin Wickham², Andrew Bennett², Michael Bass¹; ¹Univ. of Central Florida, CREOL, USA; ²Element Six Ltd., UK. The absorption of single crystal diamond in the visible and near ultra violet using laser calorimetry and spectrophotometry is reported.

JTu3A.9

Single Crystals of L-alanine for Raman Laser, Yuanyuan Wang¹, YAN REN¹, Zeliang Gao¹, Xu-Tang Tao¹; ¹SHANDONG UNIV., China. The bulk single crystals of L-alanine with high optical quality have been grown by slow cooling of the aqueous solution. Pumped by a picosecond 532 nm laser source, a lasing from the first-order Raman shift at 633 nm is obtained.

JTu3A.10

Diffraction of Laguerre-Gauss vortex beams by regular polygons, Anindya Ambuj¹, Reeta Vyas¹, Surendra Singh¹; ¹Department of Physics, Univ. of Arkansas, USA. Diffraction of Laguerre-Gauss vortex beams by regular polygons is studied theoretically and experimentally. Novel features that depend on the orbital angular momentum index, aperture and beam size ratio, and aperture position relative to beam waist are described.

JTu3A.11

ITu3∆ 12

JTu3A.13

temporal profile distortion.

efficiency is more than doubled.

Observation of cross polarization of linearly polarized Airy beam, Sean Nomoto¹, A. Aadhi², Shashi Prabhakar², R. P. Singh², Reeta Vyas¹, Surendra Singh¹; ¹Department of Physics, Univ. of Arkansas, USA; ²Theoretical Physics Division, Physical Research Laboratory, India. Linear and cross polarization intensity profiles of an Airy beam produced by a spatial light modulator were observed for various aperture coefficients and compared with theoretical profiles.

Laser Pulse Temporal Profile Distortions in Distribution of spin vortices in turbulence of Multi-pass Amplifiers, Olga Vadimova¹, Ivan spin-1 ferromagnetic spinor Bose-Einstein con-Mukhin¹, Oleg Palashov¹; ¹Inst. of Applied Physics, densate, Kazuya Fujimoto¹, Makoto Tsubota^{1,2}; Russian Federation. The laser pulse amplification ¹Department of Physics, Osaka City Univ., Japan; ²The OCU Advanced Research Inst. for Natural was investigated numerically with accounting of temporal and spatial profiles under various pulse Science and Technology, Japan. We numerically parameters. It was shown that using of multi-pass study spatial distribution of spin vortices in turbuamplifiers allows increasing efficiency and reducing lence of spin-1 ferromagnetic spinor Bose-Einstein condensate, finding that cluster structure grows as the correlation of spin and superflow velocity exhibits some power laws.

ITu3A 14

JTu3A.15

JTu3A.16

around 0.5.

JTu3A.17

is also demonstrated.

Precision spectroscopy of the optical clock tran-

sition in laser cooled neutral Hg, Christian Lytle¹,

Justin Paul¹, Tsung-Han Wu¹, R. Jason Jones¹;

¹College of Optical Sciences, Univ. of Arizona, USA,

We demonstrate cooling, trapping, and precision

spectroscopy of the (1SO- 3PO) "clock" transition

of neutral Hg. A novel room temperature fiber

based amplifier system for the cooling laser light

Time Evolution of Global Quantum Discord in

Three Coupled Quantum Dots interacting with

a Quantized Cavity Field, Willa Rawlinson¹, Reeta

Vyas¹; ¹Department of Physics, Univ. of Arkansas,

USA, Evolution of Global Quantum Discord for

three-coupled guantum dots interacting with a

quantized light field in a lossless cavity is studied

and its correlations with probabilities of the dots

Percolation in Segregated Binary Bose-Einstein

Condensates, Yumiko Mizuno¹, Kentaro Dehara¹,

Hiromitsu Takeuchi¹; ¹Department of Physics,

Osaka City Univ., Japan. Percolation is theoretically

applied to pattern formation in segregated binary

Bose-Einstein condensates. The percolation transi-

tion occurs when the ratio of the particle number

of a component to the total particle number is

in the entangled states are explored.

JTu3A.18

Stability of a Soliton in Counter-propagating Two-component Bose-Einstein Condensates with Rabi Coupling, Ayaka Usui¹, Hiromitsu Takeuchi¹; ¹Osaka City Univ., Japan. We show that a soliton is stable as a depression of densities with localized relative velocity in two-component Bose-Einstein condensates with Rabi coupling in guasi-onedimension. Stability phase diagram of the single soliton is obtained numerically.

JTu3A.19

Thermo-optical Properties of Metallic Nanoparticles in Colloidal Systems, Marco Ferreira¹, G. Martinez¹, M. Caetano¹, L. Echevarria², V. Piscitelli; ¹Universidad Central de Venezuela, Venezuela, Bolivarian Republic of: ²Departamento de Química. Universidad Simón Bolívar, Venezuela, Bolivarian Republic of. Spherical nanoparticles of different metals (gold, silver and iron), obtained by laser ablation, were characterized using thermal lens spectroscopy pumping at 532 nm with a 10 ns pulse laser-Nd-YAG system.

JTu3A.20

Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS,, Dmitriy Churin¹, Thanh Nam Nguyen¹, Khanh Q. Kieu¹, Robert Norwood¹, Nasser Peyghambarian¹; ¹Univ. of Arizona, USA. We report mid-infrared supercontinuum generation in an integrated liquid-core optical fiber filled with carbon disulfide and pumped by a compact mode-locked fiber laser at 1910nm.

JTu3A.21

Self-referenced Third-order Nonlinearities Measurements Using Nonlinear Ellipse Rotation, Maria L. Miguez¹, Emerson C. Barbano¹, Sérgio C. Zilio¹, Lino Misoguti¹; ¹Universidade de Sao Paulo, Brazil. We report on self-referenced third-order nonlinear optical properties determination method by measuring the nonlinear ellipse rotation (NER) angles. Here, using a dual-phase lock-in, we were able to measure precisely the NER on glasses and liquids.

Fuesday, 21 October

Two Color Laser Pumping of Alkali-Noble Gas

Atomic Lasers, Andrey Mironov¹, Gary J. Eden¹; ¹Univ of Illinois at Urbana-Champaign, USA. Two color optical pumping of the Rb D2-laser(780nm) through the RbXe excimer has been realized. By simultaneously photoexciting the D2-blue(760nm) and the red satellite of the D1 transition, lasing

JOINT FIO/LS

JTu3A • Joint Poster Session I-Continued

JTu3A.22

JTu3A.23

JTu3A.24

JTu3A.25

Numerical simulations of enhancement cavity dynamics driven by femtosecond frequency combs, Gregory Jacob¹, David R. Carlson¹, Tsung-Han Wu¹, R. Jason Jones¹, Ewan M. Wright¹; 'College of Optical Sciences, Unix of Arizona, USA. Numerical simulations of a frequency comb resonant with an enhancement cavity are performed to study nonlinear dynamics resulting from intracavity ionization. Results highlight the critical role played by transverse spatial effects, previously excluded in simulations.

Planar focusing of a three-dimensional image by

using the coherence as an informative parameter

strongly degenerate optical field, alexander

larkin¹, Alexander Zarubin¹; ¹mephi, Russian Fed-

eration. We observed a new effect - "Flat focusing

image formed by coherent function as informative

parameter of powerfully degenerated radiation".

In paper we demonstrate the experimental results

Wave Optics Simulations of a Focused Plenop-

tic System, Massimo Turola¹, Steve Gruppetta¹;

¹Optometry and Visual Science, City Univ. London,

UK. A wave optics numerical simulation of focused

Plenoptic systems using Fresnel propagation is presented. This shows the dependence on the lenslet

array parameters of the real optical resolution of

Comparison of sensitive nonlinear saturable

absorption of topological insulator Bi2Te3 pow-

ders and nanosheets, Che-Min Chou¹, Hsuan-Yin

Chen¹, Jin-Long Xu², Chao-Yang Tu², Chuck Lee¹;

¹Department of Photonics, National Sun Yat-Sen

Univ., Taiwan; ²Key Laboratory of Optoelectronic

Materials Chemistry and Physics of CAS, Fujian Inst.

of Research on the Structure of Matter. Chinese

Academic of Sciences, China. The saturable ab-

sorption properties of two sizes of Bi2Te3, namely

large powders prepared by commercial crystals and small sheets by further hydrothermal exfolia-

tion, have been compared under low-intensity laser

excitation at 1.0 and 2.0 um.

this system at the diffraction limit.

and physical explanation of this new effect.

JTu3A.26

Quantum Imaging of High-Dimensional Hilbert Spaces with Radon Transform, Laszlo Gyongyosi^{1,2}; 'Budapest Univ. of Techolology and Economic, Hungary; ²Hungarian Academy of Sciences, Hungary, We introduce a post-processing method for quantum imaging that is based on the Radon transform. We show that the entropic separability bound is violated considerably more

strongly in comparison to the standard setting.

JTu3A.27

Constraints in Collective State Atomic Interferometry Due to Inhomogeneities in Laser Intensity and Atomic Velocity, Resham Sarkar¹, May E. Kim¹, Renpeng Fang¹, Selim Shahriar¹; 'Northwestern Univ., USA. We show that in a collective state atomic interferometer, the signal amplitude depends significantly on the transverse spatial variation of laser intensity, and the spread in Doppler shifts due to velocity distribution in the atoms.

JTu3A.28

Unitary two-axis-twisting spin squeezing induced by entanglement swapping, Mingfeng Wang¹, Weizhi Qu¹, Pengxiong Li¹, Han Bao¹, Yanhong Xiao¹; ¹Fudan Univ, China. We present a scheme for realizing two-axis-twisting spinsqueezing of an atomic ensemble. The squeezing is produced by a triple pass of a linearly polarized coherent laser beam through an atomic ensemble under a magnetic field.

JTu3A.29

Second Harmonic Generation Inside Microcavities: On the Existence of a Threshold, Serge Gauvin¹, Marc Collette¹, Normand Beaudoin¹; ¹Département de physique et d'astronomie, Université de Moncton, Canada. The anomalous commutation relation [Ueda, M. and Imoto, N., Phys. Rev. A, 50(1), 89-92 (1994)] is used to demonstrate the existence of a threshold for second harmonic generation when it occurs from inside microcavities. This is an unexpected result.

JTu3A.30

Strong squeezing via phonon mediated spontaneous generation of photon pairs, Kenan Qu¹; ¹Department of Physics, Oklahoma State Univ., USA. We propose a scheme producing squeezed light in a double cavity optomechanical system by using the spontaneously generated photons pairs.

JTu3A.31

Humidity Sensing Using SbSI Nanophotodetectors, Krystian Mistewicz¹, Marian Nowak¹, Piotr Szperlich¹, Andrzej Nowrot¹; 'Inst. of Physics -Center for Science and Education, Silesian Univ. of Technology, Poland. This paper shows usability of antimony sulfoiodide (SbSI) nanowires as photoconductive humidity sensors. Qualitatively different photoconductivity transient characteristics for Iow, and high humidity have been observed. Desorption of H2O from SbSI nanowires surface is reported.

JTu3A.32

In inhomogeneously broadened lasers, spontaneous & stimulated emitting atoms participate in Doppler Effects differently, Chandra Roychoudhuril', 'Physics, Univ. of Connecticut, USA. Internal QM frequency for the same transition levels being fixed; spontaneously emitting source & stimulated emitting detecting atoms in an inhomogeneously broadened gas laser reveal different processes behind Doppler Effect.

JTu3A.33

Wide-Range Third-Harmonic Generation in a Step-Index Tellurite Fiber, Weiqing Gao^{1,2}, Tonglei Cheng¹, Dinghuan Deng¹, Xiaojie Xue¹, Takenobu Suzuki¹, Yasutake Ohishi¹; 'Research Center for Advanced Photon Technology, Toyota Technological Inst., Japan; ²School of Electronic Science & Applied Physics, Hefei Univ. of Technology, China. Tunable third-harmonic generation (THG) is demonstrated in a step-index tellurite fiber. The tunable spectral range from 524 to 1043 nm covers almost one octave. The far-field patterns of the TH signals are presented.

JTu3A.34

Photovoltaic properties of p-i-n InGaAs/GaAs heterostructures, Marianna Kovalova¹, Serhiy Kondratenko¹; ¹Physics, Taras Shevchenko National Univ. of Kyiv, Ukraine. Photovoltaic properties in heterostructure with quantum wires were research in the temperature range from 77 K to 290 K. The introduction of quantum wires leads to increased efficiency, the expansion of the spectral range photosensitivity and decrease the lifetime of nonequilibrium charge carriers.

JTu3A.35

Mid-infrared soliton generation in a tapered As2S5 microstructured optical fiber, Tonglei Cheng¹, Ryo Usaki¹, Xiaojie Xue¹, Dinghuan Deng¹, Yasuhire Kanou¹, Morio Matsumoto², Takashi Misumi², Takenobu Suzuki¹, Yasutake Ohishi¹; ¹ofmlab, Japan; ²Furukawa Denshi Co., Ltd., Japan. Mid-infrared soliton is obtained when the tapered As2S5 microstructured optical fiber is pumped by an optical parametric oscillator at 1900 nm. At the same time a blue-shift dispersive wave is emitted by the soliton.

JTu3A.36

Flattened supercontinuum generation in a tellurite hybrid microstructured optical fiber, Hoang Tuan Tong', Zhongchao Duan', Dinghuan Deng', Tonglei Cheng', Takenobu Suzuki', Yasutake Ohishi'; 'Optical Functional Materials Laboratory, Toyota Technological Inst., Japan. A broad SC generation spanning from 800 to 2400 nm with 5-dB spectral flatness (1060 nm of spectral span) in a tellurite highly nonlinear fiber with 3 zero-dispersion wavelengths is reported for the first time.

JTu3A.37

Analysis of spatially multiplexed optical channels using radial quantum number, Syed H. Murshid', Saud Alanzi', Rayan Enaya', Ibrahim Barka', Abhijit Chakravarty², Gurinder Parhar², Bilas Chowdhur¹, Gregory Lovell'; 'Electrical and Computer Engineering, Florida Inst. of Technology, USA; ²R&D, Emcore Corporation, USA. Spatially multiplexed optical communications output channels are analyzed using simulated radial quantum number. Experimental results are also compared to the simulated results.

JTu3A.38

Tunable Broadband in Supercontinuum Spectrum Based on Polarization Effects, Juan Carlos Hernandez-Garcia¹, Julian M. Estudillo-Ayala², Baldemar Ibarra-Escamilla¹, Olivier Pottiez³, Roberto Rojas-Laguna², Evgene Kuzin¹, Rosa J. Perez-Chimal²; ¹Optical department, Instituto Nacional de Astrofisica, Optica y Electronica, Mexico; ²Department of Electronic, Universidad de Guanajuato, Mexico; ³Photonics, Centro de Investigaciones en Optica, Mexico. We demonstrated that the bandwidth control in supercontinuum source is possible through polarization effects induced on a PCF. The spectral width obtained can be selected from 740 nm-1430 nm while it maintains a good flatness.

JTu3A.39

All-fiberized Superfluorescent Source with Distributed Side-coupled Cladding-pumped Fiber, Yingye An', Zhihe Huang', Jianqiu Cao', Shaofeng Guo', Jinbao Chen'; 'National Univ. of DefenseTechnology, China. An all-fiberized broadband superfluorescent source based on a distributed side-coupled cladding-pumped Ybdoped fiber is demonstrated. 11.4-W combined output power is obtained with a flat power spectrum. The bandwidth (FWHM) is larger than 30 nm.

JTu3A.40

Sensitivity Enhancement of Aluminium Doped Zinc Oxide (AZO) Coated Lossy Mode Resonance (LMR) Fiber Optic Sensors Using Additional Layer of Oxides, Nidhi Paliwal¹, Joseph John¹; ¹Electrical Engineering, Indian Inst. of Technology Bombay, India. Theoretical results for an AZO coated LMR fiber optic sensor with enhanced sensitivity using additional oxide layer overlay are presented for two oxides, viz. TiO₂ and Cu₂O. The maximum sensitivity was achieved for AZO/TiO₂ combination.

JM3A.41

Observation of Spatial-modulation Instability Due to Quintic Nonlinearity, Albert Reyna Ocas^{2,1}, Cid B. de Araújo²; ¹OSA Student Chapter Recife, Brazil; ²Departamento de Física, Universidade Federal de Pernambuco, Brazil. We observed spatial-modulation-instability in a colloid with suppressed cubic nonlinearity and positive quintic nonlinearity. This experiment illustrates a procedure for nonlinearity management of metaldielectric nanocomposites that can be extended to investigate other effects.

Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
Fi	0		JOINT FIO/LS
13:30–15:30 FTu4B • Optical Fiber Sensors II Presider: Michel Digonnet; Stanford Univ., USA	13:30–15:30 FTu4C • Coherence, Interference, and Polarization IV Presider: Byoungho Lee; Seoul National Univ., South Korea	13:30–15:30 FTu4D • Integrated Optics Presider: Ronald Reano; Ohio State Univ., USA	13:30–15:30 JTu4E • Novel Intense Attosecond Sources I O Presider: Laszlo Veisz; Max-Planck- Institut fur Quantenoptik, Germany
FrueB.1 • 13:30 Tutorial C Fiber Optic Sensors for Structural Monitoring, Eric Udd'; 'Columbia Gorge Research, LLC, USA. Fiber optic sensors have been developed to support structural health monitoring applica- tions in aerospace, defense, civil structure and other applications. Detection rates vary from sub-hertz to more than a GHz.	FTu4C.1 • 13:30 Invited Demonstration of an Optical Nano Beacon for Controlled Directional Emission and Coupling, Gerd Leuchs ^{1,2} , Martin Neugebauer ^{1,2} , Thomas Bauer ^{1,2} , Peter Banzer ^{1,2} ; ¹ Max-Planck Inst. for the Science of Light, Germany; ² Dept. of Physics, Univ. of Erlangen-Nuremberg, Germany. We investigate the polarization dependent direc- tional emission of a dipole-like nanoparticle in close proximity to a planar interface. The dipole moment can be tuned by position dependent excitation with a tightly focused vector-beam under normal incidence.	FTu4D.1 + 13:30 Tutorial II-V and Silicon Photonic Integrated Circuit Technologies, Thomas L. Koch'; <i>'Univ. of</i> Arizona, USA. Photonic Integrated Circuits are transitioning to a role as the only viable tech- nology for many emerging photonics solutions. This tutorial reviews the status of InP and Si PIC technologies, including strengths and applica- tion domains of each.	JTu4E.1 • 13:30 Iutoria Plasma Mirrors as Attosecond Light Sources, Fabien Quéré ¹ ; ¹ CEA Saclay, France. Plasma mirrors can specularly reflect ultraintense femtosecond plases of light of great potential for ultrafast science. I will describe the state- of-the-art in the understanding, control and performances of this process.
	Field Burloom Salon 9 Fi 13:30–15:30 FTu4B • Optical Fiber Sensors II • Presider: Michel Digonnet; Stanford Univ., USA FIUER 1 • 13:30 Tutorial • Fiber Optic Sensors for Structural Monitoring, Eric Udd'; 'Columbia Gorge Research, LLC, USA. Fiber optic sensors have been developed to support structural health monitoring applica- tions in aerospace, defense, civil structure and other applications. Detection rates vary from sub-hertz to more than a GHz.	Higher burgering Higher burgering Salon 9 Salon 10 FIG FiG 13:30–15:30 Fu4B • Optical Fiber Sensors II • • Presider: Michel Digonnet; Salon 10 Sandord Univ., USA 13:30–15:30 Fu4B • 13:30 • Fiber Optic Sensors for Structurel Anothortoring, Fic Udd'; 'Columbia Gorge Research, LLC, USA, Fiber optic sensors have been developed to support structural health monitoring applications. Detection rates vary for support structural health monitoring applications. Detectoring the rapplications. Detectoring the rube support structural health monitoring applications to between the other applications. Detectoring the rube support structural health monitoring applications to between the other applications. Detectoring the rube support structural health monitoring applications. Detectoring the rube support structure and the monitoring applications. Detectoring the rube support structural health monitoring applications. Detectoring thealthealth the rube support structural health m	Hitsdad Hitsdad Hitsdad Hitsdad Salon 10 Salon 10 Salon 11 FiO 13:30–15:30 FudB • Optical Fiber Sensors II • The Comparison of the Comparison the Comparison of the Comparison of the Comparison of the Compar

Tuesday, 21 October

channel combining spinorial and orbital angular momentum, Giuseppe Vallone¹, Vincenzo D'Ambrosio², Anna Sponselli¹, Sergei Slussarenko³, Lorenzo Marrucci³, Fabio Sciarrino^{2,4}, Paolo Villoresi¹; ¹Universita' degli Studi di Padova, Italy; ²Sapienza Universita' di Roma, Italy; ³Universita' di Napoli Federico II and CNR - SPIN, Italy; ⁴Istituto Nazionale di Ottica (INO-CNR), Italy. OAM in combination with polarization allows to encode by-means-of a Q-plate rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units.

Eric Udd, President of Columbia Gorge Research has been deeply involved with fiber optic sensors since 1977 at McDonnell Douglas, Blue Road Research and Columbia Gorge Research. He helped pioneer early work on fiber optic gyros, fiber optic smart structures, acoustic, pressure, temperature and strain sensors. Mr. . Udd has 48 issued US Patents and more pending on fiber optic technology, has written and presented over 150 papers and has chaired more than 30 international conferences on fiber optic sensor technology. He has edited the books Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd edition, Wiley, 2011 and Fiber Optic Smart Structures, Wiley, 1995. Mr. Udd is a Fellow of SPIE, OSA and McDonnell Douglas. He has been awarded the Richardson Medal for 2009 by The Optical Society for his work on fiber optic sensors and the field of fiber optic smart structures.

Encoding Fresnel diffraction over positive

and negative distances onto a spatial light modulator, Jeffrey A. Davis¹, Ignacio Moreno², Don M. Cottrell¹, Cassidy A. Berg¹, Christopher L. Freeman¹: ¹Department of Physics, San Diego State Univ., USA; ², Óptica y Tecnología Electrónica, Universidad Miguel Hernández, Spain. We demonstrate encoding of positive and negative Fresnel diffraction onto a spatial light modulator. This allows the capability to study a propagating beam without moving the detector plane.

Thomas L. Koch is Dean of the College of Optical Sciences at the University of Arizona. Previously he held Vice President positions in research and development at SDL, Lucent, and Agere Systems. Prof. Koch was an early pioneer in photonic integration technology at Bell Labs, including applications in WDM and the first operating balanced coherent heterodyne receiver PIC. Koch has received the IEEE Sumner Award, the IEEE LEOS William Streifer Award, and is a Fellow of Bell Labs, the OSA, the IEEE, and a member of the National Academy of Engineering.

During his PhD, received in 2000 from Paris 6 university, Fabien Quéré studied the mechanisms of optical breakdown of dielectric solids in the femtosecond regime. He was then a postdoctoral fellow in Prof.Corkum's group, where he worked on the development of methods for the temporal measurement of attosecond pulses of light. In 2003, he became a tenure researcher at CEA Saclay, where he made further significant contributions to attosecond metrology. He then focused on the study of new sources of attosecond pulses of light, in particular on high-harmonic generation from plasmas at ultrahigh laser intensities. In 2010, he received a grant from the European Research Council to support his research on this topic. This remains of his main subjects of interest, together with the metrology of spatio-temporal couplings of high-power femtosecond laser beams and their use for the control of high-intensity interactions.

Tucson Ballroom Salon A Tucson Ballroom Salon B

FiO

13:30–15:30 FTu4F • Fibers for Biomedical Applications

Presider: Monika Ritsch-Marte; Innsbruck Medical Univ., Austria

FTu4F.1 • 13:30 D

Colonoscopic laser surgery applied to controlled tumoral tissue removal, Felix Fanjul-Velez¹, Irene Salas-Garcia¹, Mihail Zverev¹, Jose L. Arce-Diego¹; 'Universidad de Cantabria, Spain. Endoscopic laser surgery provides minimally invasive, non-contact, highly specific tissue resection. Colonoscopic tumoral tissue removal by optical sources is analysed by a predictive approach, as an alternative to conventional surgery, radiotherapy or chemotherapy.

FTu4F.2 • 13:45 Invited

Multimodality Fiber-based Endoscopes for Cancer Detection, Jennifer K. Barton'; 'Biomedical Engineering, Univ. of Arizona, USA. Combined anatomical (optical coherence tomography) and functional (fluorescence) optical imaging can facilitate early detection of cancerous lesions. We have demonstrated multimodality imaging in the colon and ovary, and are building miniature (0.7- 2.0mm diameter) endoscopes.

Visit www.frontiersinoptics.com for more information. 13:30–15:15 FTu4G • Relativistic Light Sources Presider: Igor Jovanovic, Penn.State Univ., USA

Tunable, Quasi-monoenergetic X-rays from Thomson Scattering with Laser-driven Electrons, Stefan Karsch^{1,2}, Johannes Wenz², Konstantin Khrennikov², Matthias Heigoldt², Alexander Buck¹, Jiancai Xu¹, Antonia Popp², Andreas Maier⁴, Nathaniel Kajumba², Florian Grüner⁴, Simone Schleede³, Laszlo Veisz¹, Franz Pfeiffer³; ¹Max-Planck-Institut fur Quantenoptik, Germany; ²Universität München, Germany; ³TU München, Germany; ⁴Universität Hamburg, Germany. We present the first quasi-monochromatic and energy-tunable Thomson-backscattering X-ray source created by colliding laser-driven electron beams with a laser pulse. Tunability between 10 keV and 40 keV is achieved by varying the electron energy.

FTu4G.2 • 14:00 Invited

Bright X-ray Pulse Generation by Laser Thomson-Backscattering and Traveling Wave Optical Undulators, Ulrich Schramm^{1,2}, Michael Bussmann¹, Jurjen Couperus¹, Tom Cowan^{1,2}, Alexander Debus¹, Arie Irman¹, Axel Jochmann¹, Richard Pausch², Roland Sauerbrey^{1,2}, Klaus Steiniger¹, ¹Inst. of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Germany; ²Technische Universität Dresden, Germany. Measured Thomson-backscattering X-ray spectra recorded as a function of the observation angle and quantitatively reproduced in simulations are presented. A traveling wave scheme is proposed to increase the yield and may allow for all-optical free-electron laser operation. Tucson Ballroom Salon C

13:30-15:30

LTu4H • Resonators and Photonic Crystals I Presider: Yong-Hee Lee; Korea Advanced Inst of Science & Tech, South Korea

LTu4H.1 • 13:30 Invited

Cavity QED in Quantum Dot-photonic Crystal Nanocavity Coupled Systems, Yasuhiko Arakawa'; 'Univ. of Tokyo, Japan. We discuss solid-state cavity QED with quantum-dots embedded in high-Q photonic crystal nanocavities for advanced quantum-dot light sources, including single artificial atom lasers, nano-cavity-based self-frequency conversion lasers, and spontaneous two photon emitters.

13:30-15:30

LS

LTu4l • Semiconductor Nanooptics III Presider: Mackillo Kira; Emory Univ., USA

Tucson Ballroom

Salon D

Terahertz Experiments on Microcavities, Yun-Shik Lee¹, Joseph L. Tomaino¹, Andrew D. Jameson¹, Galina Khitrova², Hyatt M. Gibbs², Christoph Böttge³, Mackillo Kira³, Stephan W. Koch³, ¹Physics, Oregon State Univ., USA; ²Optical Science Center, Univ. of Arizona, USA; ³Fachbereich Physik and Material Sciences Center, Philips Univ., Germany. Strong THz pulses induce pronounced nonlinear optical effects in a QW microcavity, resonantly driving exction-polariton polarizations coupled to an optically dark 2p-exciton polarization. The coherent coupling between the polarizations dephases within a few picoseconds.

LTu4H.2 • 14	:00 🗲	Inv	ited
Wayoquidae	Arraye	in	Hova

Waveguides Arrays in Hexagonal Photonic Crystals, C. Martijn de Sterke¹, Hannah Moore¹, J. Scott Brownless¹, Felix Lawrence¹, Sahand Mahmoodian¹, Kokou Dossou², Lindsay Botten³; ¹School of Physics, The Univ. of Sydney, Australia; ²School of Mathematical Sciences, Univ. of Technology Sydney, Australia; ³National Computational Infrastructure, Australian National Univ., Australia. We show that coupled photonic crystal waveguides in hexagonal lattices offer very wide flexibility for the steering of single and multiple beams, and for diffraction management.

Coherent Bloch Oscillations Driven by Ultrastrong THz Excitation, Matthias Hohenleutner¹, Olaf Schubert¹, Fabian Langer¹, Benedikt Urbanek¹, Christoph Lange¹, Ulrich Huttner², Daniel Golde², Torsten Meier³, Stephan W. Koch², Mackillo Kira², Rupert Huber¹; ¹Department of Physics, Univ. of Regensburg, Germany; ²Department of Physics, Univ. of Marburg, Germany; ³Department of Physics, Univ. of Paderborn, Germany. The carrier wave of high-intensity phase-locked multi-THz pulses controls dynamical Bloch oscillations and interband polarization in bulk semiconductors, leading to the emission of all-coherent high-order harmonics covering 12.7 optical octaves from THz to VIS regimes.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
FiO				JOINT FIO/LS
FTu4A • Quantum Communications—Continued	FTu4B • Optical Fiber Sensors II— Continued	FTu4C • Coherence, Interference, and Polarization IV—Continued	FTu4D • Integrated Optics— Continued	JTu4E • Novel Intense Attosecond Sources I—Continued
FTu4A.3 • 14:15 Vacuum Suppression in Gain-tuned Continu- ous-Variable Quantum Teleportation of a Sin- gle Photon by Conditioning on Sender, Maria Fuwal, Shunsuke Toba ¹ , Shuntaro Takeda ¹ , Petr Marek ² , Ladislav Mista ² , Radim Filip ² , Peter van Loock ³ , Akira Furusawa ¹ ; ¹ The Univ. of Tokyo, Japan; ² Optics, Palacky Univ., Czech Republic; ³ Physics, Johannes Gutenberg-Universitat Mainz, Germany. We experimentally demon- strate bolstering the strength of gain-tuned continuous variable quantum teleportation of a single photon by conditioning on the sender's measurement results to eliminate excess vacuum contamination in the output.	FTu4B.2 • 14:15 Armored Fiber Bragg Grating Sensor for Wall Intrusion Detection, Bo Lin ¹ , Wen Bin Ji ¹ , Swee Chuan Tjin ¹ , Jianzhong Hao ² ; ¹ School of Electrical and Electronic Engineering, Nanyang Technological Univ., Singapore; ² RF, Antenna and Optical Department, Inst. for Infocomm Research, Singapore. We propose a newly designed fiber Bragg grating (FBG) sensor with protective armored cable. The packaged FBG array is bonded on a specially designed arc- shape structure mounted on a wall for intrusion detection for the first time.	FTu4C.3 • 14:15 Zero Order Diffraction Suppression in a Phase-only Spatial Light Modulator via the GS Algorithm, Wynn Dunn Gil Improso ¹ , Paul Leonard Atchong C. Hilario ¹ , Giovani A. Tapang ¹ ; 'National Inst. of Physics, Univ. of the Philippines-Diliman, Philippines. A phase shifted beam was calculated using the Gerchberg Sax- ton algorithm for an annulus around a target in a spatial light modulator in order to suppress the zeroth order diffraction pattern using destructive interference.	FTu4D.2 • 14:15 Invited Integrated Photonics for Space-Division Multiplexing, Nicolas K. Fontaine'; 'Alcatel- Lucent Bell Labs, USA. The success of spatial multiplexing depends on highly integrated and cost effective components. We compare the strengths and weaknesses of several SDM components including 3D waveguides, silicon photonics, all-fiber devices, and free-space wavelength selective switches.	JTu4E.2 • 14:15 Invited Production of Intense Isolated Attosecond Pulses for Non-linear XUV-XUV Pump-probe Experiments with 100 eV Photons, Boris Bergues', Daniel Rivas', Matthew Weidmann', Hartmut Schröder', Gilad Marcus ^{1,2} , Wolfram Helml', Xun Gu', Tibor Wittmann', Reinhard Kienberger ^{1,3} , Paraskevas Tzallas', Dimitris Charalambidis ^{4,5} , Ferenc Krausz ^{1,6} , Laszlo Veisz'; 'Max-Planck-Institut für Quantenoptik, Ger- many; ² The Hebrew Univ. of Jerusalem, Israel; ³ Technische Universität München, Germany; ⁴ Foundation for Research and Technology - Hel- las, Inst. of Electronic Structure & Laser, Greece; ⁵ Univ. of Crete, Greece; ⁶ Ludwig Maximilians
FTu4A.4 • 14:30 Quantum Communications with Overlapping Time Modes: Optimal Receiver Capable of Dispersion Compensation, Julia Larikova ^{1,2} , Vesselin Velev ³ , Prem Kumar ^{1,3} , Yu-Ping Huang ^{1,3} , ¹ Center for Photonic Communication and Com- puting, Department of Electrical Engineering and Computer Science, Northwestern Unix, USA; ² Coriant GmbH & Co. K, USA; ³ Center for Photonic Communication and Computing, Department of Physics and Astronomy, North- western Univ., USA. We study fiber-transmission impairments of overlapping time-frequency modes for quantum communications in high- dimensional Hilbert space, and propose a class of optical receivers with built-in capability of overcoming such impairments.	FTu4B.3 • 14:30 Multicore Optical Fiber Point Sensors, Amy Van Newkirk ¹ , Guillermo Salceda-Delgado ^{1,2} , J. Enrique Antonio-Lopez ¹ , Rodrigo Amezcua-Cor- rea ¹ , Axel Schulzgen ¹ , ¹ CREOL, Univ. of Central Florida, USA; ² CIO, Centro de Investigaciones en Optica, Mexico. A novel point sensor utilizing multicore fiber is demonstrated. We show the ability to make distributed measurements while operating in both a transmissive and reflective mode, with low cost, simple fabrication, and high stability.	FTu4C.4 • 14:30 Measuring spatial coherence through the shadow of small obstacles, Katelynn Sharma ¹ , James K. Wood ¹ , Thomas G. Brown ¹ , Miguel A. Alonso ¹ ; 'Inst. of Optics, Univ. of Rochester, USA. We present a simple method to measure the spatial coherence of a partially coherent field by analyzing measurements of the radiant intensity with and without a well-known obscura- tion. Our results are consistent with theoretical predictions.		Universität, Germany. Intense isolated attosec- ond pulses with >100 eV photon energy are produced via high-order-harmonic generation using 80mJ sub-5 fs laser pulses. The generation of these attosecond pulses and their application to non-linear XUV-XUV pum-probe experiments is discussed.
FTu4A.5 • 14:45 Efficient sorting of single-photon wave pack- ets by temporal-mode interferometry, Dileep V. Reddy', Michael G. Raymer', Colin J. McKin- strie ² , 'Physics, Univ. of Oregon, USA; ² Applied Communication Sciences, USA. We propose a highly efficient method to decompose and ana- lyze photons into copolarized, transverse-mode matched, temporally and spectrally overlapping, but field-orthogonal, longitudinal temporal modes. The method uses cascaded nonlinear- optical quantum frequency conversion.	FTu4B.4 • 14:45 Six-Fold Temperature and Strain Sensitivity Improvement of Brillouin Based Distributed Sensor, Victor Lambin lezzi ¹ ; 'Polytechnique Montreal, Canada. We show how a novel all- fiber sensor system can be used to increase the Brillouin scattering temperature and strain sensi- tivity by the order of the stimulated Stokes wave used for distributed sensing in optical fiber.	FTu4C.5 • 14:45 Image Formation and Halo Removal in Diffrac- tion Phase Microscopy with Partially Coherent Illumination, Christopher A. Edwards ¹ , Tan Nguyen ¹ , Gabriel Popescu ¹ , Lynford Goddard ¹ ; ¹ Unix of Illinois at Urbana-Champaign, USA. We present a quantitative model which describes the observed phase reductions and halo-effect in quantitative phase imaging systems under partial spatial coherence and provide a practi- cal method to eliminate the halo and obtain accurate topography.	FTu4D.3 • 14:45 Low-Stress Silicon Nitride Platform for Broadband Mid-Infrared Microphotonics, Pao T. Lin ^{1,4} , Vivek Singh ¹ , Hao-Yu Lin ² , Tom Tiwald ³ , Lionel C. Kimerling ¹ , Dawn T. H. Tan ⁴ , Anuradha M. Agarwal ¹ ; ¹ MIT, USA; ² Harvard, USA; ³ J. A. Woollam Co., Inc., USA; ⁴ Singapore Univ. of Technology and Design, Singapore. We experimentally demonstrate a sophisticated mid-IR microphotonics platform adopting engi- neered Si-rich and low-stress silicon nitride thin films where an extensive infrared transparency	JTu4E.3 • 14:45 Invited High Photon Flux Atto-second Sources at the Lund Laser Centre, Anne Harth ¹ , Filippo Campi ¹ , Esben W. Larsen ¹ , Chen Guo ¹ , Linnea Rading ¹ , Eleonora Lorek ¹ , Christoph Heyl ¹ , Piotr Rudawski ¹ , Arthur Losquin ¹ , Miguel Miranda ¹ , Bastian Manschwetus ¹ , Johan Mauritsson ¹ , Cord L. Arnold ¹ , Anne L'Huillier ¹ , Per Johns- son ¹ ; ¹ Lunds Universitet, Sweden. We provide an update on our high photon flux atto-second sources: an XUV source with ~10^{11} photons/ pulse for nonlinear atto-second experiments and

60

up to $\lambda = 8.5 \ \mu\text{m}$ and optical loss less than 0.2 dB/cm is achieved.

a 200 kHz XUV source with ~10^{{11} photons/ second for electron-imaging and coincidence

experiments.

FiO/LS 2014 • 19–23 October 2014

Tucson Ballroom	Tucson Ballroom	Tucson Ballroom	Tucson Ballroom
Salon A	Salon B	Salon C	Salon D
Fi	0	L	S
FTu4F • Fibers for Biomedical	FTu4G • Relativistic Light Sources—	LTu4H • Resonators and Photonic	LTu4I • Semiconductor Nanooptics III—
Applications —Continued	Continued	Crystals I—Continued	Continued
FTu4F.3 • 14:15 Spatial Location Tracking Using Optical Coherence Tomog- raphy-Proof Of Concept For Gynecology, Megha Acharya ¹ , Ashok Gowda ¹ , Kathy Vincent ² , Massoud Motamedi ² ; ¹ Biotex Inc, USA; ² Univ. of Texas Medical Branch, USA. We demon- strated the feasibility for spatial location tracking with OCT in location mapping of cervix. Electromagnetic tracking sen- sors were coupled with Time Domain OCT and fused with colposcopic imaging to provide real time position tracking.			
FTu4F.4 • 14:30 O	FTu4G.3 • 14:30 Invited	LTu4H.3 • 14:30 Invited	LTu4I.3 • 14:30 Invited
Multiphoton imaging with compact femtosecond fiber	Extreme Light: Driver for a Table-Top Electron Accelera-	Towards Few-photon Optoelectronics with Photonic Crys-	Probing Electron-Phonon Interactions at the Saddle Point

Multiphoton imaging with compact temtosecond fiber lasers, Khanh Q. Kieu¹, Soroush Mehravar¹, Bhaskar Baner jee¹, Nasser Peyghambarian¹; ¹Univ. of Arizona, USA. We discuss the development of compact, affordable multiphoton microscopes using robust femtosecond fiber lasers as the excitation source. Application in brain imaging and Barrett's cancer imaging will be presented. Extreme Light: Driver for a Table-Top Electron Accelerator and Tunable Narrowband Hard X-Ray Light Source, Donald P. Umstadter¹; 'Univ. of Nebraska Lincoln, USA. Two high intensity laser pulses from a single laser system are used to both accelerate electrons (<0.5-GeV) and generate narrowband (50%) tunable (0.07-9 MeV) x-rays by means of inverse Compton scattering. Towards Few-photon Optoelectronics with Photonic Crystal Devices, Arka Majumdar^{1,2}, Armand Rundquist⁴, Sonia Buckley⁴, Jonghwan Kim⁵, Sanfeng Wu², Michal Bajcsy^{4,6}, Feng Wang⁵, Xiaodong Xu^{2,3}, Jelena Vuckovic⁴; ¹Electrical Engineering, Univ. of Washington, Seattle, USA; ²Physics Department, Univ. of Washington, Seattle, USA; ³Material Science, Univ. of Washington, Seattle, USA; ³Material Science, Univ. of Washington, Seattle, USA; ⁴E.L. Ginzton Lab, Stanford Univ., USA; ⁵Physics Department, Univ. of California, USA; ⁶Inst. for quantum computer, Univ. of Waterloo, Canada. We report several devices based on the photonic crystal platform integrated with new optical materials, namely quantum dots and 2D-materials, to enable few-photon optoelectronics. Probing Electron-Phonon Interactions at the Saddle Point in Graphene, Adam T. Roberts^{1,2}, Rolf Binder¹, N. Kwong¹, Dh. Golla¹, D. Cormode¹, B. LeRoy¹, Henry Everitt², Arvinder Sandhu¹, ¹Univ. of Arizona, USA; ²US Army, USA. High frequency differential transmission spectroscopy of graphene, probing near the M-point, is performed and analyzed theoretically. Electron-phonon coupling is identified as the chief mechanism for renormalization with an effective acoustic deformation potential of approximately 5eV.

FTu4F.5 • 14:45 D

Optical Coherence Tomography and Multispectral Fluorescence Imaging Falloposcope, Molly Keenan¹, Tyler Tate², Elizabeth Swan², John Black³, Urs Utzinger^{1,2}, Jennifer K. Barton^{1,2}, ¹Biomedical Engineering, The Univ. of Arizona, USA; ²Optical Sciences, The Univ. of Arizona, USA; ³Glannaventa, Inc, USA. We are combining multispectral fluorescence imaging (MFI) and optical coherence tomography (OCT) into a 0.6mm diameter endoscope. This size allows access to the fallopian tubes transvaginally, creating a minimally-invasive screening method for high risk women. Tuesday, 21 October

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
	FiO					
FTu4A • Quantum Communications—Continued	FTu4B • Optical Fiber Sensors II— Continued	FTu4C • Coherence, Interference, and Polarization IV—Continued	FTu4D • Integrated Optics— Continued	JTu4E • Novel Intense Attosecond Sources I—Continued		
FTu4A.6 • 15:00 C Identifying Nonclassicality of Multiphoton and Multimode Quantum States Directly from Experimental Detector Outcomes, Tim J. Bartley ¹ , Gaia Donati ¹ , Xian Min Jin ¹ , Animesh Datta ¹ , Marco Barbieri ¹ , Ian A. Walmsley ¹ ; ¹ Unix. of Oxford, UK. We show experimentally how nonclassical statistics arise directly from the joint outcomes of multiplexed on-off detectors on two-mode, multiphoton optical states. This identifies a possible route to an entanglement witness using this scheme.	FTu4B.5 • 15:00 Fast Brillouin Optical Time Domain Analysis Sensor based on Adaptive Linear Prediction and Cyclic Pulse Coding, Yonas S. Muanenda', Mohammad Taki'ı Fabrizio Di Pasquale'; 'Scuola Superiore di Studi Universitarie di Perfezion- amento Sant' Anna di Pisa, Italy. We propose and experimentally demonstrate a Brillouin Optical Time Domain Analysis sensor combin- ing adaptive linear prediction with cyclic pulse coding for fast and accurate strain measurement over 10km standard singlemode fiber with meter-scale spatial resolution.	FTu4C.6 • 15:00 Nonlinear Reference Phases in Synthetic Optical Holography, Bradley M. Deutsch ¹ , Martin Schnell ² , Rainer Hillenbrand ² , P. Scott Carney ^{1,3} , ¹ Beckman Inst. for Advanced Science and Technology, Univ. of Illinois at Urbana- Champaign, USA; ² IKERBASQUE, Basque Foundation for Science, Spain; ³ Department of Electrical and Computer Engineering, Univ. of Illinois at Urbana-Champaign, USA. Synthetic optical holography permits the use of arbitrary reference waves in digital holography, with each requiring an accompanying inversion algorithm. We consider, for example, a sinusoidal refer- ence phase, resulting in an analog to pseudo- heterodyne interferometry.	FTu4D.4 • 15:00 Dispersion-Engineered Silicon Nitride Wave- guide for Supercontinuum Generation at Vis- ible Wavelengths, Wei Yu ¹ , Lin Zhang ² , Lionel C. Kimerling ^{1,2} , Jurgen Michel ² ; ¹ Department of Materials Science and Engineering, MIT, USA; ² Microphotonics Center, MIT, USA. We propose a dispersion-engineered silicon nitride slot waveguide for nonlinear applications at the visible wavelength range. We show that an on- chip octave-spanning supercontinuum can be generated from 480 nm to 1200 nm.			
FTu4A.7 • 15:15 Demonstration of Single-Photon Three-Qubit Quantum Logic with Spatial Light Modulators, Kumel Kagalwala ¹ , Giovanni Di Giuseppe ^{1,2} , Ayman F. Abouraddy ¹ , Bahaa E. Saleh ¹ ; ¹ CREOL, The College of Optics and Photonics, Univ. of Central Florida, USA; ² School of Science and Technology, Physics Division, Univ. of Camerino, Italy. We experimentally demonstrate linear, de- terministic, single-photon three-qubit quantum gates implemented by a spatial light modulator and using polarization and spatial-parity qubits. We also prepare single-photon three-qubit GHZ and W states and present tomographic measurements.	FTu4B.6 • 15:15 Enhanced Detection Accuracy and Figure of Merit of Surface Plasmon Resonance Based Fi- ber Optic Sensor for Blood-Glucose Sensing, Akhilesh Kumar Mishra ¹ , Satyendra K. Mishra ² , Gadi Eisenstein ¹ , Banshi D. Gupta ² ; 'Electrical Engineering, Technion—Israel Inst. of Technol- ogy, Israel; ² Physics Department, Indian Inst. of Technology, Delhi, India. Indium tin oxide-silver coated surface plasmon resonance based fiber optic probe for sensing of blood glucose is proposed. Theoretical simulation based on ray optics predicts enhancement in sensor's detec- tion accuracy and figure of merit.	FTu4C.7 • 15:15 Non-Bayesian noise reduction methods in digital holography, Pasquale Mermolo ^{1,2} , Vit- torio Bianco ¹ , Melania Paturzo ¹ , Bahram Javidi ³ , Pietro Ferraro ¹ ; <i>ICNR - Istituto Nazionale di Ot-</i> <i>tica, Italy; ²Center for Advanced Biomaterials for</i> <i>HealthCare@CRIB, Istituto Italiano di tecnologia,</i> <i>Italy; ³ECE Department, Univ. of Connecticut,</i> <i>USA.</i> In digital holography, bayesian denoising approaches reduce the incoherent noise, but prior information are needed about the noise statistics. We propose and compare two strate- gies of holograms denoising without exploiting noise statistics.	FTu4D.5 • 15:15 Post-fabrication trimming on silicon nitride photonic Bragg grating add-drop filter, Sangsik Kim ¹ , Minghao Qi ¹ , 'Purdue Univ., USA. We study the post-fabrication trimming effect on a silicon nitride photonic Bragg grating add- drop filter for the realization of practical CWDM network system.	JTu4E.4 • 15:15 Macroscopic Manipulation of High-Harmonic- Generation Through Bound-State Coherent Control, Itai Hadas ¹ , Alon Bahabad ¹ ; ¹ Tel Aviv Univ, Israel. It is theoretically shown that coher- ent control of atomic bound states can achieve macroscopic control over the process of High- order Harmonic Generation. In particular purely temporal Quasi-Phase-Matching is numerically demonstrated.		
15:30–16:00 Coffee Break and Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7						
15:30–17:00 Meet the APS Journal Editors, Ania Terrace						
	16:00-17:30 Exhibitor Appreciation Reception Arizona Ballroom Salons 1-7					

Tucson Ballroom Salon A Tucson Ballroom Salon B

Tucson Ballroom Salon C

Tucson Ballroom Salon D

THz pulses. The nonlinear THz transmission depends on the

local conductivity of the samples and dynamically varies in

the time domain.

. . .

FTu4F • Fibers for Biomedical Applications —Continued

FTu4F.6 • 15:00 D

High Resolution Microendoscopy with Structured Illumination for Evaluation of Breast Cancer Architecture, Jessica Dobbs¹, Matthew Kyrish¹, Noah Bedard², Ben Grant¹, Savitri Krishnamurthy³, Wei Yang³, Tomasz Tkaczyk¹, Rebecca Richards-Kortum¹; ¹Bioengineering, Rice Univ., USA; ²Univ. of California-San Francisco, USA; ³The Univ. of Texas M.D. Anderson Cancer Center, USA. We compare images acquired with high resolution microendoscopy (HRME), HRME with structured illumination (SI-HRME), and confocal microscopy. Gray-level co-occurrence matrix-based contrast shows improved rejection of out-of-focus light with SI-HRME relative to HRME images.

FTu4F.7 • 15:15 D

Evaluation of Volume Holographic Images Obtained Through an Endoscope for in-vivo Medical Applications, Isela D. Howlett¹, Michael Gordon¹, Gabriel Orsinger¹, John Brownlee¹, Kenneth Hatch¹, Marek Romanowski¹, Jennifer K. Barton¹, Raymond K. Kostuk¹; ¹Univ. of Arizona, USA. We present a process of evaluating images from volume holographic imaging (VHI) systems. In particular, a VHI endoscope is evaluated and a set of image processing and analysis techniques suitable for clinical environments is discussed. FTu4G • Relativistic Light Sources— Continued

FTu4G.4 • 15:00

FiO

Enhanced Proton Acceleration by an Ultrashort Laser Interaction with Structured Dynamic Plasma Targets, Elad Schleifer¹, Eyal Nahum¹, Shmuel Eisenmann¹, Arie Zigler¹; ¹Hebrew Univ. of Jerusalem, Israel. We experimentally and numerically demonstrate an order of magnitude enhanced acceleration of protons to high energy by relatively modest ultrashort laser pulses and structured dynamical plasma targets.

	-	•
_	LTu4H • Resonators and Photonic Crystals I—Continued	LTu4I • Semiconductor Nanooptics III— Continued
rashort Laser Targets, Elad , Arie Zigler'; imentally and ude enhanced rely modest ul- alasma targets.	LTu4H.4 • 15:00 Invite Title to be Announced, Marko Loncar ¹ ; ¹ Harvard Univ., USA. Abstract not available.	LTu4I.4 • 15:00 Time and Energy Resolved Probing of Many-body In teractions in Graphene and Heterostructures, Dheera Golla ¹ , Adam T. Roberts ² , Rolf Binder ³ , N. Kwong ³ , Mathev Yankowitz ¹ , D. Cormode ¹ , B. LeRoy ¹ , Henry Everitt ² , Arvinde Sandhu ^{1.3} , ¹ Department of Physics, Univ. of Arizona, USA ² U.S. Army Aviation and Missile Research, Development and Engineering Center, USA; ³ College of Optics, Univ. of Arizona, USA. We studied the electron-phonon and electron electron interactions in graphene and its heterostructure using pump-probe spectroscopy. Graphene on hexa-Boror Nitride undergoes band structure modification, which affect the relaxation mechanisms of the hot carriers.
		LTu4I.5 • 15:15 Terahertz Induced Transparency in Single-Layer Graphene Michael J. Paul ¹ , Byounghwak Lee ¹ , Jenna L. Wardini ¹ , Zacl J. Thompson ¹ , Andrew D. Stickel ¹ , Ali Mousavian ¹ , Ethan D Minot ¹ , Yun-Shik Lee ¹ ; ¹ Physics, Oregon State Univ., USA We demonstrate THz-induced transparency in two type of single-layer CVD graphene samples utilizing high-field

15

15:30–16:00 Coffee Break and Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7

15:30–17:00 Meet the APS Journal Editors, Ania Terrace

16:00–17:30 Exhibitor Appreciation Reception, Arizona Ballroom, Salons 1-7

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12	
FiO					
16:00–17:30 FTu5A • Quantum Electronics I Presider: Yu-Ping Huang; Northwestern Univ., USA	16:00–17:15 FTu5B • Optical Fiber Sensors III • Presider: John Canning; Univ. of Sydney, Australia	16:00–17:30 FTu5C • Coherence and Polarization I Presider: Laura Waller; Univ. of California Berkeley, USA	16:00–17:30 FTu5D • Microresonators Presider: Nicolas Fontaine; Alcatel- Lucent Bell Labs, USA	16:00–17:15 FTu5E • Novel Image and Information Analysis Methods Presider: Lei Tian; Univ. of California, Berkeley, USA	
FTu5A.1 • 16:00 Time-delayed, coherent feedback control of a many-body cavity QED system, Andrew Parkins', Arne Grimsmo ² , Bo-Sture Skagerstam ² ; 'Univ. of Auckland, New Zealand; 'The Norwe- gian Univ. of Science and Technology, Norway. We propose a time-delayed, coherent feedback scheme for open quantum-optical systems that can dramatically speed up convergence to steady state. We apply the scheme to a cavity QED implementation of the open Dicke model.	Fru5B.1 • 16:00 Tutorial C Fiber Optic Gyroscopes: Past and Present, Michel J. Digonnet'; 'Stanford Univ., USA. This tutorial will review the principles, performance, and limitations of conventional fiber optic gyroscopes utilizing broadband light, and the promising advances made recently in fiber optic gyroscopes interrogated with a laser.	FTu5C.1 • 16:00 Invited Engineering Spatial Coherence of Lasers for Speckle-Free Imaging, Hui Cao ¹ , Brandon Redding ¹ , Michael Choma ² ; ¹ Applied Physics, Yale Univ., USA; ² Diagnostic Radiology and Pediatrics, Yale School of Medicine, USA. We showed that random lasers can be engineered to provide low spatial coherence. By exploit- ing the low spatial coherence of specifically- designed random lasers, we demonstrated speckle-free full-field imaging in the setting of intense optical scattering.	FTu5D.1 • 16:00 Trapping Light by Mimicking Gravitational Lensing, Hui Liu ¹ , Chong Sheng ¹ , Shining Zhu ¹ , Dentcho Genov ² , ¹ School of Physics, Nanjing Univ., China; ² College of Engineering and Sci- ence, Louisiana Tech Univ., USA. We propose a distorted optical waveguide around a micro- sphere to mimic curved spacetimes caused by the "gravitational fields". Gravitational lensing effects analogues are experimentally demon- strated and this can be used to prospective light harvesting.	FTu5E.1 • 16:00 Invited D Label-free Assessment of Mitochondrial Organization in three-dimensional Tissues, Irene Georgakoudi ¹ , Dimitra Pouli ¹ , Antonio Varone ¹ , Joanna Xylas ¹ , Kyle Quinn ¹ , Margaret McLaughlin-Drubin ² , Karl Munger ² ; 'Biomedi- cal Engineering, Tufts Univ., USA; 'Medicine, Brigham and Women's Hospital, Harvard Medi- cal School, USA. A Fourier-based method can be used to analyze endogenous NADH two-photon excited fluorescence images to characterize quantitatively mitochondrial organization. This optical biomarker is sensitive to metabolic changes that may occur at the onset of disease.	
FTu5A.2 • 16:15 C Observation of parity-time symmetry in an optical system formed by moving atoms, Peng Peng'; 'Physics, Fudan Univ., China. We report the first experimental implementation of parity-time symmetry in an optical system using atoms. Coupling of two optical modes is realized by coherent diffusion of atomic coher- ence. Theoretical model and experiment results are presented.	Dr. Digonnet earned his doctorate in fiber optics at Stanford University. Since then, he has spent most of his professional career at Stanford University's Department of Applied Physics supervising the research activity of Ph.D. students and carrying out his own research in photonics. Dr. Dironnet has made several key		FTu5D.2 • 16:15 PT-symmetric microring lasers, Mohammad- Ali Miri ¹ , Hossein Hodaei ¹ , Matthias Heinrich ¹ , Mercedeh Khajavikhan ¹ , Demetrios N. Christo- doulides ¹ ; ¹ Univ. of Central Florida, USA. We show that a multimode laser cavity when accom- panied by an identical but lossy partner can lase at a single longitudinal mode. Our experimental results demonstrate this mode-selective effect in parity-time (PT) symmetric micro-rings lasers.		
FTu5A.3 • 16:30 Broadening the Sub-Standard-Quantum-Limit Region in Quantum Noise Limited Sensitivity for Gravitational Wave Detectors, Minchuan Zhou ¹ , Selim Shahriar ^{1,2} , ¹ Department of Phys- ics and Astronomy, Northwestern Univ., USA; ² Department of EECS, Northwestern Univ., USA. We present schemes for gravitational wave de- tectors that incorporate anomalous dispersion in signal recycling exhibiting a broad region below	contributions to his field, including the invention of the fiber optic amplifier, a component that amplifies light inside a fiber and enabled the telecommunication revolution of the mid-1990s, in particular, the high-speed Internet. He has also been extensively involved in the develop- ment of the fiber optic gyroscope, now a critical part of the equipment airlines use to guide pas- senger planes safely. Dr. Digonnet is currently exploring new implications in the consideration	FTu5C.2 • 16:30 Complete Representation of a Correlation Singularity in a Partially Coherent Beam, Gregory J. Gbur ¹ , Charlotte Stahl ¹ ; ¹ Univ of North Carolina at Charlotte, USA. The complete structure of a correlation singularity of a partially coherent vortex beam is studied and its propa- gation characteristics described. The singularity undergoes non-trivial evolution on propagation.	FTu5D.3 • 16:30 A Discrete Resonance, All-Order Dispersion Engineering Method for Microcavity Design for Fourwave Mixing, Cale M. Gentry ¹ , Xiaoge Zeng ¹ , Milos Popovic ¹ ; ¹ Univ. of Colorado at Boulder, USA. We propose a rigorous method for tailoring the dispersion of azimuthally- symmetric microresonators for fourwave mix- ing applications and show example designs. The method implicitly includes momentum	FTu5E.2 • 16:30 Morphological analysis framework of living cells by digital holography, Pasquale Memmolo ^{1,2} , Francesco Merola ¹ , Lisa Miccio ¹ , Maria Iannone ² , Maurizio Ventre ³ , Paolo A. Netti ² , Andrea Finizio ¹ , Melania Paturzo ¹ , Cosimo Distante ⁴ , Pietro Ferraro ¹ ; ¹ CNR - Istituto Nazionale di Ottica, Italy; ² Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di teonologia. Italy: ³ Department of Materials	

signal recycling, exhibiting a broad region below

the standard quantum limit in the quantum noise

limited sensitivity curves, which corresponds to

opto-mechanical resonance.

of slow and fast light. Formerly thought to be

constant, it now appears that light can be sped

up or slowed, with profound ramifications for

the interaction of matter and light.

di tecnologia, Italy; ³Department of Materials

and Production Engineering Univ. of Naples

Federico II, Italy; ⁴CNR - Istituto Nazionale di Ottica, Italy. Identification and measurements of

region of interest in quantitative phase contrast maps of biological cells by digital holographic microscopy is investigated, with the aim to analyze the 3D positions and 3D morphology

together.

conservation and directly reveals phase mis-

match via resonance detuning, avoiding Taylor

expansions.

FiO/LS 2014 • 19-23 October 2014

Tucson Ballroom Salon A

FiO

16:00-17:30 FTu5F • General Optics in Biology and Medicine II D

Presider: Kristen Maitland; Texas A&M Univ., USA

FTu5F.1 • 16:00

Optimal Design of Miniature Wide-Angle Computational Cameras for Retinal Prostheses and Wearable Visual Aids, Furkan E. Sahin¹, Patrick J. Nasiatka¹, James D. Weiland², Mark S. Humayun², Armand R. Tanguay³; ¹Electrical Engineering - Electrophysics, Univ. of Southern California, USA; ²Ophthalmology and Biomedical Engineering, Univ. of Southern California, USA; ³Electrical Engineering-Electrophysics, Chemical Engineering and Materials Science, Biomedical Engineering, Ophthalmology, Physics and Astronomy, and Neuroscience Graduate Program, Univ. of Southern California, USA. An imaging system design procedure for miniature wide-angle cameras with software correction of distortion is presented. Analysis of the effect of distortion on the software-corrected, final image during optical design allows for optimized dewarped final images.

FTu5F.2 • 16:15

Imaging Gold Nanorod Diffusion in Mucus Using Polarization Sensitive OCT, Richard Blackmon¹, Raghav Chhetri¹, David Hill¹, Brian Button¹, Amy L. Oldenburg¹; ¹Univ of North Carolina at Chapel Hill, USA. We demonstrate using PS-OCT to sense changes in the diffusion rate of gold nanorods (GNRs) in actively transporting pulmonary mucus in normal and disease-like states. This novel approach may lead to advances in monitoring pathogenesis and treatment dosimetry in real-time.

FTu5F.3 • 16:30 Invited

Colloidal Quantum Dots for Photo-sensing and Neuron Stimulation, Lih Y. Lin1; 1 Electrical Engineering, Univ. of Washington, USA. Colloidal guantum dots have high guantum efficiency, unique optical and chemical properties, which allow various new applications. We discuss their potential in high-sensitivity photodetection and facilitating efficient optical stimulation of neurons.

Tucson Ballroom Salon B

JOINT FIO/LS

16:00-17:30

JTu5G • Novel Intense Attosecond Sources II Presider: Zenghu Chang; Univ. of Central Florida, CREOL, USA

JTu5G.1 • 16:00 Invited

High gain Frequency Domain Optical Parametric Amplification, Philippe Lassonde¹, Maxime Boivin¹, Ladan Arissian², Bruno Schmidt^{1,3}, François Légaré¹; ¹INRS-Energie Mat & Tele Site Varennes, Canada; ²Univ. of New Mexico, USA; ³few-cycle Inc., Canada. Optical parametric amplification (OPA) in the frequency domain rather than in time domain circumvents phase mismatch and damage threshold limitations. This approach enables amplification of few-cycle pulses, and nJ to microJ in a single stage.

Tucson Ballroom Salon C

16:00-17:30 LTu5H • Chemical and Biological Sensing I Presider: King-Chuen Lin; National Taiwan

LTu5H.1 • 16:00 Invited

Univ., Taiwan

The Making of 3D Multi-Resolution Motion Pictures for the Microscopic World, Haw Yang¹; ¹Princeton Univ., USA. We outline the development of the 3D multi-resolution microscopy (10-nm localization precision in XYZ and 10 microsecond time resolution, integrated with micron / seconds confocal imaging), as well its applications in drug delivery and energy biosciences.

16:00-17:30

LS

LTu5I • Quantum Information II Presider: Joshua Nunn: Univ. of Oxford, UK

Tucson Ballroom

Salon D

Squeezing Enhanced Quantum Operation, Ulrik L. Andersen¹, Lars S. Madsen¹; ¹Danmarks Tekniske Universitet, Denmark. In this talk we will present a new application of squeezed light. We demonstrate that the efficiency of mapping a quantum state from one mode to another can be enhanced utilizing squeezed states.

JTu5G.2 • 16:30 Invited

Generation of High-power Isolated Attosecond Pulses by an Infrared Two-color Gating, Eiji J. Takahashi1; 1Extreme Photonics Research Group, RIKEN, Japan. We propose and demonstrate two methods for generating high-energy isolated attosecond pulse: one is an infrared two-color laser field synthesis and the other is an infrared double optical gating. These methods enable us to perform a nonlinear optics experiment.

LTu5H.2 • 16:30 Invited

Bio-light for Optical Sensing, Seok-Hyun A. Yun1; 1Wellman Center for Photomedicine, Harvard Medical School, USA. Laser and fluorescence-based sensing is promising for medical applications. Here, we present new approaches to enable efficient light delivery into the body and to generate light from biomolecules -- biological light -- for optical sensing and therapy.

LTu5I.2 • 16:30 Invited

Harnessing the Time-frequency Structure of Ultrafast Quantum States, Benjamin Brecht¹, Vahid Ansari¹, Andreas Christ¹, Georg Harder¹, Hubertus Suche¹, Christine Silberhorn¹; ¹Integrated Quantum Optics, Univ. of Paderborn, Germany. Time-frequency modes of ultrafast quantum states are promising candidates for high-dimensional quantum information applications. Here, we present waveguide devices that facilitate a complete control over TF modes, rendering them useful for actual implementations.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FTu5A • Quantum Electronics I— Continued	FTu5B • Optical Fiber Sensors III— Continued	FTu5C • Coherence and Polarization I—Continued	FTu5D • Microresonators— Continued	FTu5E • Novel Image and Information Analysis Methods— Continued
FTu5A.4 • 16:45 Dynamic control on light polarization through electromagnetically induced transparency in a rare-earth ion doped crystal, Zhixiang Li ^{1,2} , Jingjun Xu ^{1,2} , Guoquan Zhang ^{1,2} , 'School of Physics, Nankai Univ., China; 'TEDA Applied Physics Inst., Nankai Univ., China. We showed that the electromagnetically induced transpar- ency in Pr ³⁺ .Y ₂ SiO ₅ crystals can induce significant polarization changes of light, which may be employed to compensate for the polarization change resulting from birefringence.	FTu5B.2 • 16:45 Detecting trapped atoms using an optical nanofiber, Tara Hennessyl, Ciaran F. Phelan ¹ , Thomas Busch ¹ ; 'Okinawa Inst of Science & Technology, Japan. We show that an optical nanofiber can be used to resolve spontaneous emission from a row of regularly separated ⁸⁷ Rb atoms in an optical lattice with single site resolution.	FTu5C.3 • 16:45 Optical memory based on coherent popula- tion oscillations, Marie-Aude Maynard ¹ , Fabien Bretenaker ¹ , Fabienne Goldfarb ¹ ; ¹ Laboratoire Aimé Cotton, CNRS, Université Paris Sud 11 - ENS Cachan, France. We report the experimental observation of Coherent Popula- tion Oscillation (CPO) based light storage in metastable helium at room temperature. This light storage technique has been shown to be phase preserving.	FTu5D.4 • 16:45 Wavelength Conversion in Modulated Dual- Mode Resonators and its Equivalence to a Linear Filter Model, Mark T. Wade ¹ , Xiaoge Zeng ¹ , Milos Popovic ¹ ; ¹ Univ. of Colorado at Boulder, USA. We present a resonant modula- tion scheme that enables efficient wavelength conversion. The system maps onto linear filter equations that provide straightforward analysis and optimized design. Efficiencies of silicon carrier-plasma modulator implementations are estimated.	FTu5E.3 • 16:45 Performance of DullRazor® on Digital Im- ages Acquired at Multiple-Wavelengths, Jose Alberto Delgado Atencio ¹ , Margarita C. Rodríguez ¹ , Juan C. Valdiviezo ¹ , David Vil- legas ¹ , Alicia M. Godínez ¹ ; ¹ UPT, Mexico. We investigated the performance of DullRazor® to remove hairs from a phantom mimicking a skin pigmented lesion. Results indicates that DullRazor® performed relatively well only when the phantom was illuminated at the green and red wavelengths.
Fu5A.5 • 17:00 All-Fiberized Double-Cladding Yb-Doped Fiber Amplifier Operation near 980 nm, Jianqiu Cao', Yu Yu', Yingye An', Shaofeng Guo', Xiaojun Xu', Jinbao Chen', Xinming Lü'; 'National Univ of Defense Technology, China. An all-fiberized continuous-wave double-cladding Yb-doped fiber amplifier operating near 980 nm is presented. More-than-6-W signal power is obtained with the slope efficiency of 32%.	FTu5B.3 • 17:00 Surface plasmon resonance (SPR) based fiber optic urea sensor using silver, ITO and enzyme entrapped gel layers, Satyendra K. Mishra ¹ , Banshi D. Gupta ¹ ; ¹ Physics Department, Indian Inst. of Technology Delhi, India. Fabrication and characterization of a SPR based fiber optic urea sensor have been reported. The resonance wavelength of the probe fabricated using layers of ITO and enzyme decreases with the increase in the urea concentration.	FTu5C.4 • 17:00 Extra phase shift created by optically detuned light storage in metastable helium, Marie- Aude Maynard ¹ , Romain Bouchez ¹ , Etienne Brion ¹ , Tarek Labidi ¹ , Musawwadah Mukhtar ¹ , Santosh Kumar ² , Rupamanjari Ghosh ^{2,3} , Fabien Bretenaker ¹ , Fabienne Goldfarb ¹ ; ¹ Laboratoire Aimé Cotton, CNRS, Université Paris Sud 11 - ENS Cachan, France; ² School of Physical Sci- ences, Jawaharlal Nerhu Univ., India; ³ School of Natural Sciences, Shiv Nadar Univ., India. We perform Electromagnetically Induced Transpar- ency (EIT)-based storage in metastable helium at room temperature. An additional phase shift is shown to be imposed to the retrieved pulse when we detune the coupling and probe beams from the center of the Doppler profile.	FTu5D.5 • 17:00 Surface-Coupled Microsphere Resonators, Tom Galvin ¹ , Jose A. Rivera ¹ , Manas Gartia ¹ , Logan L. Liu ¹ , Gary J. Eden ¹ ; ¹ ECE, Univ. of Illinois, USA. A novel micro-optical amplifier is evaluated experimentally and theoretically. Comprising a microsphere (onto which a gain medium is tethered) and a plasmonic surface, this micro-optical system is capable of amplify- ing Raman emission generated internally to the microsphere.	FTu5E.4 • 17:00 Image Quality Metrics for Non-Traditional Imagery, Edward A. Watson ^{1,2} ; ¹ Univ. of Dayton, USA; ² Vista Applied Optics, USA. We discuss some traditional image quality metrics and explore a different formulation to compare non-traditional imagery such as 3D point clouds (which offer contrast in range rather than con- trast in irradiance) to a traditional 2D image.
FTu5A.6 • 17:15 C Three-dimensional measurement of the Airy- Bessel wave packet propagation, Qian Cao ¹ , Chenchen Wan ¹ , Andy Chong ^{1,2} ; ¹ Electro-Optics Program, Univ. of Dayton, USA; ² Physics, Univ. of Dayton, USA. We measured the three-dimen- sional (3D) intensity profile of the Airy-Bessel wave packet and its evolution under dispersion and diffraction. Its linear light bullet feature was verified in a 3D fashion.		FTu5C.5 • 17:15 Simultaneous Compression and Encryption of Polarimetric Images, M. Aldossari ¹ , Ayman Alfalou ¹ , C. Brosseau ¹ ; ¹ ISEN-Brest, France. A series of experiments is performed to test a scheme of simultaneoues compression and encryption of polarimetric images. The ability to discriminate between objects embedded in scattering media makes this scheme suited to applications of underwater mine detection	FTu5D.6 • 17:15 Broad-bandwidth pulse transmission through an ultrahigh-Q nanocavity with a chirped pulse, Zhelun Chen ¹ , Wataru Yoshiki ¹ , Takasumi Tanabe ¹ ; ¹ Science and Technology, Keio Univ., Japan. We show that broad-bandwidth-chirped pulses can propagate through an ultrahigh-Q nanocavity by using optical nonlinearity. We found that the output of a certain wavelength was larger than the input because of adiabatic wavelength conversion.	

Tuesday, 21 October

Tucson Ballroom	Tucson Ballroom	Tucson Ballroom	Tucson Ballroom
Salon A	Salon B	Salon C	Salon D
FiO	JOINT FIO/LS	L	S
FTu5F • General Optics in Biology and	JTu5G • Novel Intense Attosecond	LTu5H • Chemical and Biological	LTu5I • Quantum Information II—Continued
Medicine II—Continued	Sources II—Continued	Sensing I—Continued	
FTu5F.4 • 17:00 Understanding the Multispectral Forward Scatter Patterns by Diffraction Theory, Huisung Kim ¹ , Galen B. King ¹ , Arun K. Bhunia ² , Euiwon Bae ¹ ; ¹ Mechanical Engineering, Purdue Univ, USA; ² Food Science, Purdue Univ, USA. We present comprehensive theoretical modeling of spectral light scatter- ing phenomena from bacterial colonies. Individual colony is modeled as spatial light modulator, and effect of elevation, diameter, and refractive index of a colony were analyzed.	JTu5G.3 • 17:00 Efficient generation of isolated attosecond soft x-ray pulses, Carlos Hernandez-Garcia ^{1,2} , Tenio Popmintchev ¹ , Mar- garet M. Murnane ¹ , Henry C. Kapteyn ¹ , Luis Plaja ² , Agnieszka A. Jaron-Becker ¹ , Andreas Becker ¹ ; ¹ JILA, Univ. of Colorado, USA; ² Grupo de Investigacion en Optica Extrema, Univer- sidad de Salamanca, Spain. We theoretically demonstrate the production of bright isolated attosecond pulses from mid-infrared-laser-driven high harmonic generation to photon energies well beyond the water window. Counterintuitively, the production of bright isolated attosecond pulses requires multi cycle driving pulses.	LTu5H.3 • 17:00 Invited Sensing of Protein Reactions Using Pulsed Laser Based Transient Grating, Masahide Terazima'; 'Kyoto Univ., Japan. For understanding biological functions, we have developed a time-resolved bio-sensing technique based on the pulsed laser induced transient grating method and succeeded in detecting conformational fluctuation and intermolecular interaction.	LTU51.3 • 17:00 (nvited) Engineering Parametric Down-conversion in Multimode Nonlinear Waveguides, Konrad Banaszek ¹ , Michal Karpinski ² , Michal Jachura ¹ , Czesław Radzewicz ¹ , Jasleen Lugani ³ , Divya Bharadwaj ³ , Krishna Thyagarajan ³ ; 'Univ. of Warsaw, Poland; ² Univ. of Oxford, UK; ³ Indian Inst. of Technology Delhi, In- dia. We discuss intermodal dispersion as a versatile tool to control photon pairs produced in chi(2) waveguides, present experimental generation of spatially pure photons exhibiting high-visibility nonclassical interference, and describe schemes to produce spatial entanglement.

FTu5F.5 • 17:15 D

Nanoscaled Rare-Earth Doped Crystals Heater, Yurii V. Orlovskii^{1,2}, Alexander Vanetsev¹, Anastasia Ryabova², Konstantin Pukhov^{2,3}, Alexandr Popov^{1,2}, Elena Samsonova¹, Kerda Keevend¹, Igor Romanishkin², Ilmo Sildos¹, Victor Loschenov²; ¹Inst. of Physics, Univ. of Tartu, Estonia; ²A.M. Prokhorov General Physics Inst RAS, Russian Federation; ³National Research Univ. "MPEI", Russian Federation. We develop novel approach to hyperthermia for cancer treatment based on multiphonon relaxation of optical excitation in the Dy3+ doped nanocrystals after laser irradiation. It allows set fast and accurately preset temperature for local heating.

JTu5G.4 • 17:15

Ellipticity Dependence of High-order Harmonics Generation, Esben W. Larsen¹, Stefanos Carlström¹, Johan Mauritsson¹, Eleonora Lorek¹, Christoph Heyl¹, Anne L'Huillier¹, David Palecek², Donatas Zigmantas²; ¹Department of Physics, Lund Universitet, Sweden; ²Department of Chemical Physics, Lund Univ., Sweden. We study how the two shortest quantum paths involved in high-order harmonic generation are affected by the polarization of the driving laser using a commercially available high repetition rate laser system. 18:00–19:00 OSA Holography & Diffractive Optics Technical Group Networking Event, Arizona Ballroom, Salon 10

18:00–19:00 APS Annual Business Meeting, Tucson Ballroom, Salon D

18:00–19:00 OSA Annual Business Meeting, Arizona Ballroom, Salon 8

19:00-21:00 OSA Member Reception: The Scorchn' Sonoran, Tucson Ballroom, Salons E & F

19:00–21:00 Laser Science Banquet, Signature Grill Restaurant, Outdoor Patio, JW Marriott Tucson Starr Pass Resort Tuesday, 21 October

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12	
FiO					
	07:00-	-18:00 Registration, Arizona Ballroon	n Foyer		
08:00–10:00 FW1A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning I Presider: Andrew Forbes; CSIR National Laser Centre, South Africa	08:00-10:00 FW1B • Photonic Crystal Cavities and Waveguides Presider: Mahmoud S. Rasras; Masdar Inst. of Science and Tech, United Arab Emirates	08:00–10:00 FW1C • Quantum Optical Measurement and Quantum Technologies I Presider: Hugues de Riedmatten; ICFO -The Inst. of Photonic Sciences, Spain	08:00–10:00 FW1D • Long Wavelength Mid-IR to THz Fiber Devices I Presider: David Lancaster; Univ. of Adelaide, Australia	08:00–10:00 FW1E • Microscopy and OCT I Presider: Brandon Redding; Yale Univ., USA FW1E.1 • 08:00	
FW1A.1 • 08:00 Invited Controlling Light using Three-Dimensional Spatially Variant Self-Collimating Pho- tonic Crystals, Stephen M. Kuebler ^{1,2} , Jenefir Digaum ² , Javier Pazos ³ , Jeffrey Chiles ² , Gabriel Padilla ¹ , Adrian Tatulian ¹ , Raymond C. Rumpf ³ , Sasan Fathpour ² , ¹ Chemistry Department and Physics Department, Univ. of Central Florida, USA; ² CREOL, The College of Optics and Pho- tonics, Univ. of Central Florida, USA; ³ EM Lab, W. M. Keck Center for 3D Innovation, Univ. of Texas at El Paso, USA. Tight control of an optical beam is demonstrated based on self-collimation within three-dimensional all-dielectric photonic crystals for which the orientation of the unit cell is progressively varied to direct power flow.	FW1B.1 • 08:00 Invited O Novel Effects in Photonic Crystal Cavities, Thomas F. Krauss!; 'Unix. of York, UK. Photonic crystals never cease to amaze with their ability to control optical phenomena. For example, their ability to confine light and control the coupling to external radiation gives rise to strong enhancement of light emission; unusual boundary conditions give rise to interesting cha- otic behaviour, and, as realised very recently, we can even use them to control thermal emission properties by controlling absorption.	FW1C.1 • 08:00 Invited Auantum Motion and Microwave Fields, Tauno Palomakii', 'JILA, Department of Phys- ics, Unix. of Colorado, USA. I will demonstrate coherent control of a mechanical oscillator with a precision at the quantum level. Mastery of the quantum state enables us to explore fun- damental limits of measurement and consider applications in quantum information.	FW1D.1 • 08:00 Tutorial Mid-Infrared Fiber Sources: Challenges and Opportunities, Stuart D. Jackson'; 'Engineering, Macquarie Unix, Australia. I will provide a biref summary of the field of mid-infrared fiber asers highlighting the important parameters developments that have contributed to birs field. I will then discuss the challenges, applications and opportunities for further research.	Quantifying Cellular Response to Treatment and Dynamic Behaviors Using Quantitative Phase Microscopy (QPM), Katherine Creath ^{1,2} , Goldie Goldstein ³ ; 'Independent Consultant, USA, ² The Univ. of Arizona, USA; ³ 4D Technology Corp, USA. QPM is utilized to quantify cellular response before, during and after treatment to discern reaction mechanisms, morphology changes and connect structure to function. Results highlight changes in optical thickness, optical volume and dry cell mass. FWIE.2 • 08:15 Rapid diagnosis of whole prostate core- needle biopsies with video-rate structured illumination microscopy, Mei Wang ¹ , David Tul- man ¹ , Tyler C. Schlichenmeyer ³ , Hillary Kimbrell ² , J. Quincy Brown ¹ ; 'Biomedical Engineering, Tulane Univ., USA; ² Pathology and Laboratory Marking Tulene Univ.	
FW1A.2 • 08:30 Stable three-dimensional trapping of metallic nanoparticle at resonance with engineered vectorial optical field, Guanghao Rui ¹ , Qi- wen Zhan ¹ ; ¹ Electro-Optics Program, Univ. of Davton USA A novel strategy is proposed to	FW1B.2 • 08:30 Invited Silicon nanomembrane based Devices for Optical Sensing and On-chip Interconnects, Ray T. Chen ^{1,2} ; ¹ Electrical and Computer Engineering, The Univ. of Texas, Austin, USA; ² Omega Optica (USA Silicon pagemembrane)	FW1C.2 • 08:30 Optical Detection of Radio Waves Through a Nanomechanical Transducer, Tolga Bagci ¹ , Anders Simonsen ¹ , Silvan Schmid ² , Louis G. Vil- lanueva ² , Emil Zeuthen ¹ , Jürgen Appel ¹ , Jacob M. Taylor ³ , Anders S. Sørensen ¹ , Koji Usami ¹ ,	Stuart Jackson received the BSc and the BSc(Hons) degrees in 1989 and 1990 respec- tively from the University of Newcastle (Aus- tralia). In 1990, he joined the Centre for Lasers and Applications at Macquarie University to undertake research toward the PhD degree, which he received in 1996. In 1995, he joined the Laser Photonics Group at the University of Manchester and initiated the research there into high power fibre lasers. In 1999 he joined the Optical Fibre Technology Centre at the University of Sydney where he became a Senior	We report video-rate structured illumination microscopy (VR-SIM) as a practical method for high-resolution imaging of whole core-needle biopsies in seconds. Prostate cancer is rapidly and reliably identified in VR-SIM images, sug- gesting a use for in-procedure biopsy screening. FW1E.3 • 08:30 Invited Imaging Cancer-associated Motility and Remodeling by Temporal Statistics of OCT Signals, Amy L. Oldenburg ^{1,2} ; ¹ Physics and Astronomy, Univ of North Carolina at Chapel	

Dayton, USA. A novel strategy is proposed to optically trap gold nanoparticles even under the resonant condition using engineered optical field. This optical tweezers supports stable three-dimensional trapping while avoiding trap destabilization due to optical overheating.

Omega based nanophotonic devices are presented. Further applications using defect engineered photonic crystal waveguide (PCW) based slow light devices provide us with an ultra-sensitive biosensing platform.

Albert Schliesser¹, Eugene S. Polzik¹; ¹Niels Bohr Inst., Univ. of Copenhagen, Denmark; ²Department of Micro- and Nanotechnology, Technical Univ. of Denmark, Denmark; ³Joint Quantum Inst./NIST, USA. Electronic signals are converted with high efficiency, and very low added noise, to the optical domain by coupling them to a nanomechanical membrane whose displacement is interferometrically monitored with quantum-limited sensitivity.

Research Fellow and Technical Manager of silica fibre fabrication. In 2009 he moved the School of Physics at the University of Sydney as a Queen Elizabeth II Fellow funded by the Australia Research Council. In 2014 he moved to the Department of Engineering at Macquarie University to undertake a permanent position in teaching and research. His interests include diode pumped solid-state lasers, spectroscopy, nonlinear optics and integrated optics.

Univ of North Carolina at Chapel Hill, USA. Opti-

cal coherence tomography provides spatially-

localized heterodyne dynamic light scattering,

which is used to monitor ATP-driven motions of

cells and Brownian motions of plasmonic probe

particles in 3D breast cancer tissue models.

FiO/LS 2014 • 19-23 October 2014

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D			
FiO	LS					
07:00–18:00 Registration, Arizona Ballroom Foyer						
08:00–10:00 FW1F • Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard I Presider: Pablo Artal; Universidad de Murcia, Spain	08:00–10:00 LW1G • Resonators and Photonic Crystals II Presider: Joshua Hendrickson; US Air Force Research Laboratory, USA	08:00–10:00 LW1H • Attosecond Science II Presider: Andy Kung; National Tsing Hua Univ., Taiwan	08:00–10:00 LW1I • Filamentation I Presider: Jean-Claude Diels; Univ. of New Mexico, USA			
FW1F.1 • 08:00 Invited C Lasers in Retinal Imaging, Stephen A. Burns'; 'Indiana Univ., USA. Lasers were used in measuring the optical quality of the eye as early as 1965, but it was about 1980 that they re- ally began to impact retinal imaging. This talk describes the advancements in retinal imaging that have occurred over the last 35 years and the role lasers played in this development.	LW1G.1 • 08:00 Invited Spontasneous Emission of Er atoms in Metallic Nanocavity, Yong-Hee Lee ¹ , Yong-Hee Lee ¹ ; 'Physics, KAIST, Republic of Korea. Fast and bright spontaneous emission is observed from Er atoms placed in a gold nano-cavity. The record-high Purcell factor of >100 is directly measured.	LW1H.1 • 08:00 Invited Generation of Bright Isolated Attosecond Soft X-Ray Puls- es Driven by Multi-Cycle Mid-Infrared Lasers, Ming-Chang Chen ^{1,2} , Christopher Mancuso ¹ , Carlos Hernández-García ^{1,3} , Franklin Dollar ¹ , Ben Galloway ¹ , Dimitar Popmintchev ¹ , Pei- Chi Huang ² , Barry Walke ⁴ , Luis Plaja ³ , Agnieszka A. Jaron- Becker ¹ , Andreas Becker ¹ , Margaret M. Murnane ¹ , Henry C. Kapteyn ¹ , Tenio Popmintchev ¹ ; 'JILA and Department of Physics, Univ. of Colorado Boulder, 'USA; ² Inst. of Photonics Technologies, National Tsing Hua Univ., Taiwan; ³ Grupo de Investigación en Óptica Extrema, Universidad de Salamanca,	LW11.1 • 08:00 Invited Title not Available, Andrius Baltuska ¹ ; ¹ Technische Universi- tait Wien, Austria. Abstract not available.			

The ANSI 2014 Standard for Safe Use of Lasers, Francois C. Delori¹; ¹Schepens Eye Research Inst., USA. The revised ANSI 136.1 Standard incorporates comprehensive changes with the focus on usability. New experimental data on spot size dependence of thresholds and on damage mechanisms for ultra short pulses has resulted in general in less strigent safety levels.

Quantum Nano-Photonic Devices Based on Rare-Earth Doped Crystals, Andrei Faraon¹, Tian Zhong¹, Evan Miyazono¹, Alex Hartz¹, Jonathan Kindem¹; ¹Applied Physics, California Inst. of Technology, USA. Rare-earth ions in crystalline hosts are coupled to nano-resonators, thus enabling large Purcell factors and high optical depths in micron-long structures. These devices will enable dense on-chip optical quantum memories and new quantum bits.

LW1H.2 • 08:30 Invited

Waveforms for Optimal Enhancement of High-order Harmonics by Synthesizing Two- or three-color Laser Fields, Chii Dong Lin¹, Cheng Jin¹, Anh Thu Le¹; *Yansas State* Univ., USA. High-order harmonics reaching keV energies can be generated with optimized waveform by synthesizing a 2-micron mid-infrared laser with a small fraction of its third harmonic, resulting in a ten-fold increase of harmonic yields.

Spain; ⁴Department of Physics, Univ. of Delaware, USA. By driving the high harmonic generation process with multi-cycle mid-infrared laser pulses, we demonstrate bright isolated,

attosecond soft X-ray pulses for the first time.

LW11.2 • 08:30 Invited

The Role of Filamentation in THz Wave Air Photonics, Xi-Cheng Zhang¹, Kang Liu¹; ¹The Inst. of Optics, Univ. of Rochester, USA. Laser-induced filamentation with femtosecond optical excitation provides new method to generate and detect broadband THz waves. We report new results of using filamentation for THz wave air photonics, including remote THz wave sensing.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
FiO						
FW1A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning I—Continued	FW1B • Photonic Crystal Cavities and Waveguides—Continued	FW1C • Quantum Optical Measurement and Quantum Technologies I—Continued	FW1D • Long Wavelength Mid-IR to THz Fiber Devices I—Continued	FW1E • Microscopy and OCT I— Continued		
FW1A.3 • 08:45 Simulation of Multiple-Optical-Axis Pattern- Integrated Interference Lithography (PIIL) Systems, Donald E. Sedivy ¹ , Thomas K. Gay- lord'; 'ECE, Georgia Inst. of Technology, USA. Exposure patterns for an optimized multiple- optical-axis PIIL system are simulated using a combination of ray tracing and Fourier analysis for several lens tilt configurations. Reasonable fidelity is shown to be possible for tilts up to 40 deg.		FW1C.3 • 08:45 Generation of Photon Pairs in Green Fluores- cent Protein, Siyuan Shi', Abu Thomas', Neil V Corzo', Prem Kumar', Yu-Ping Huang', Kim Fook Lee'; 'Center for Photonic Communication and Computing, EECS Department, Northwestern Univ., USA. We demonstrate generation of correlated photon pairs in naturally occurring Green Fluorescent Protein through the process of nondegenerate four-wave mixing. We obtain high purity photon pairs with a maximum coin- cidence to accidental ratio of ~70.	FW1D.2 • 08:45 Experimental and Numerical Investigations on 2.8 μm Q-switched Pulse Amplification, Gongwen Zhu ¹ , Xiushan Zhu ¹ , Robert Nor- wood ¹ , Nasser Peyghambarian ¹ ; ¹ College of Optical Sciences, Univresity of Arizona, USA. An Er ³⁺ -doped ZBLAN fiber amplifier for Q- switched pulses at 2.79 μm is reported. Over 24 μJ pulse energy at an average output power of 1.0 W was achieved at a pump power of 9.4 W.			
FW1A.4 • 09:00 Three-Dimensional Periodic Structures via Pattern-Integrated Interference Lithography, Matthieu C. Leibovici', Thomas K. Gaylord'; 'Electrical and Computer Engineering, Georgia Inst. of Technology, USA. Simulation results predicting the single-exposure fabrication of custom-modified 3D periodic microstructures by pattern-integrated interference lithography (PIIL) are presented. These results indicate PIIL is a viable method of making versatile 3D microstructures rapidly.	FW1B.3 • 09:00 Withdrawn.	FW1C.4 • 09:00 Ultrabroadband spontaneous parametric fluorescence in 800 nm region toward ultra- high-resolution quantum optical coherence tomography, Masayuki Okano ^{1,2} , Hwan H. Lim ³ , Ryo Okamoto ^{1,2} , Akira Tanaka ^{1,2} , Yuichi Naga- matsu ^{1,2} , Norihiko Nishizawa ⁴ , Sunao Kurimura ³ , Shigeki Takeuchi ^{5,1} ; 'Research Inst. for Electronic Science, Hokkaido Univ., Japar; ² The Inst. of Scientific and Industrial Research, Osaka Univ., Japar; ³ National Inst. for Materials Science, Ja- pan; ⁴ Graduate School of Engineering, Nagoya Univ., Japan; ⁵ Graduate School of Engineering, Kyoto Univ., Japan. Quantum optical coherence tomography can realize high-resolution imaging with dispersion tolerance by virtue of quantum entanglement. We generate ultrabroadband spontaneous parametric fluorescence from chirped quasi-phase matching devices to achieve the ultrahigh-resolution imaging.	FW1D.3 • 09:00 Hybrid Chalcogenide Nanowire for Mid-IR Single-Optical Cycle Pulse Generation, Amine Ben Salem ¹ , Rim Cherif ¹ , Mourad Zghal ¹ ; ¹ Univ. of Carthage, Engineering School of Communi- cation of Tunis (Sup'Com), GreS'Com Labora- tory, Tunisia. We design an As2S3 nanowire embedded-core in silica photonic crystal fiber. The hybrid structure shows to be very promising for mid-IR pulse compression in the monocycle regime with broadband low-energy supercon- tinuum generation at 1550 nm.	FW1E.4 • 09:00 O Cxygen Distribution in Cortical Microvascu- lature, Sava Sakadzic ¹ , Emiri T. Mandeville ¹ , Louis Gagnon ¹ , Joseph Musacchia ¹ , Mohammad Yaseen ¹ , Eng H. Lo ¹ , Anna Devor ² , David A. Boas ¹ ; 'Harvard Medical School, Massachusetts General Hospital, USA; ² Univ. of California, San Diego, USA. We applied multimodal microscop- ic imaging of the cortical intravascular partial pressure of O2 and blood flow to elucidate the roles of arterioles and capillaries in securing tissue oxygenation during metabolic and blood flow perturbations.		
FW1A.5 • 09:15 Photothermal in-situ synthesis of localized tungsten oxide nanobeam structures, Jaeho Shim', Jong-Bum You', Jeong Oen Lee', Kyung- mook Kwon', Jun-Bo Yoon', Kyoungsik Yu'; 'Department of Electrical Engineering, Korea Advanced Inst of Science & Tech, Republic of Korea. We demonstrate tungsten oxide semiconductor nanostructures fabricated by photothermal oxidation processes on the suspended metal nano-layer. The electrical conductivities of the nanobeam structures are measured against the temperature to validate their metal/semiconductor material properties.	FW1B.4 • 09:15 Microphotonic Channel Add-Drop Filter Based on Dual Photonic Crystal Cavity System in Push-Pull Mode, Christopher V. Poulton ¹ , Xiaoge Zeng ¹ , Mark T. Wade ¹ , Milos Popo- vic ¹ ; ¹ Univ. of Colorado at Boulder, USA. We demonstrate an add-drop filter based on a dual photonic crystal microcavity system that emulates a traveling-wave resonator. Realized on a 45nm SOI CMOS chip, the device shows 16dB through-port extinction and 1dB drop loss.	FW1C.5 • 09:15 Hybrid optomechanical cooling via atomic three-level schemes, Francesco Bariani ¹ , Pierre Meystre ¹ , Swati Singh ² , Lukas Buchmann ³ , Muku- nd Vengalattore ⁴ ; ¹ College of Optical Sciences, Univ. of Arizona, USA; ³ Department, Harvard Univ., USA; ³ Department of Physics, Univ. of California, USA; ⁴ Laboratory of Atomic and Solid State Physics, Cornell Univ., USA. We investigate hybrid optomechanical schemes involving cold atoms to improve cooling in the Doppler regime. We focus on two specific examples of tunable three-level configurations: Electromagnetically Induced Transparency and Recoil Induced Resonances.	FW1D.4 • 09:15 Highly Nonlinear Triangular Core Photonic Crystal Fiber with All Normal Dispersion for Supercontinuum Generation, Ravindra K. Sinha ¹ , Ajeet Kumar ¹ , Than Singh Saini ¹ ; ¹ Delhi Technological Univ., India. New design of triangular-core PCF in As2Se3 glass with all-normal dispersion has been proposed for su- percontinuum generation. Structure possesses nonlinear coefficient as high as 5400 W^(-1) Km^(-1) with -2 ps/nm.Km dispersion at 4400 nm wavelength.	FW1E.5 • 09:15 Application of Task-based Assessment in Optical Coherence Tomography in the Con- text of Tear Film Imaging, Jinxin Huang ¹ , Qun Yuan ^{2.5} , Eric Clarkson ³ , Matthew Kuppinski ⁴ , Jannick P. Rolland ⁵ , ¹ Department of Physics and Astronomy, Univ. of Rochester, USA; ² School of Electronic and Optical Engineering, Nanjing Univ. of Science and Technology, China; ³ De- partment of Radiology, Univ. of Arizona, USA; ⁵ The Inst. of Optics, Univ. of Arizona, USA; ¹ College of Optical Sciences, Univ. of Rochester, USA. In the context of tear film imaging, we developed a task-based assessment framework that enables a customized OCT system to yield unbiased estimates of thickness down to 20 nm with nanometer-class precision.		

Tucson Ballro Salon A	oom	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
FiO			LS	
FW1F • Symposium on 50 Ophthalmology and the Ne Standard I—Continued	Years of Lasers in ew ANSI Safety	LW1G • Resonators and Photonic Crystals II—Continued	LW1H • Attosecond Science II—Continued	LW1I • Filamentation I—Continued
FW1F.3 • 09:00 Invited		LW1G.3 • 09:00 Invited	LW1H.3 • 09:00 Invited	LW1I.3 • 09:00 Invited

Laser Technologies Enhancing OCT Performance, Wolfgang Drexler1; 1Medizinische Universitait Wien, Austria. OCT is one of the fastest clinically and economically accepted optical imaging techniques. The most important light sources technologies that have significantly improved axial resolution, penetration depth and imaging speed in OCT will be reviewed.

Topological States of Photons in Nanostructures, Alexander N. Poddubny^{1,2}; ¹Ioffe Inst., Russian Federation; ²ITMO Univ., Russian Federation. We present our recent theoretical and experimental results on the topological edge states of plasmons, exciton-polaritons and photons in various nanostructures, including zigzag chains of nanodisks and nanospheres, coupled quantum wells, waveguides and resonators. A 200 TW Driving Laser for Generating Microjoule Level Isolated Attosecond Pulses, Zenghu Chang¹; ¹Univ. of Central Florida, CREOL, USA. A carrier-envelope phase stabilized 200 TW, 15 fs Ti:Sapphire laser is being developed for generating isolated attosecond pulses with microjoule energy. Preliminary carrier-envelope phase effects have been demonstrated in Double Optical Gating experiments.

Fully Microscopic Studies of Strong-Field Atom Ionization, Stephan W. Koch^{2,1}, Kolja Schuh¹, Joerg Hader¹, Jerome V. Moloney¹; ¹College of Optical Sciences, Univ. of Arizona, USA; ²Physics Department, Philipps Universitaet Marburg, Germany. The interaction of a highly off-resonant light pulse with an atomic gas is modeled fully microscopically. The resulting equations are solved numerically for an atomic model system excited by a strong light pulse.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
FiO						
FW1A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning I—Continued	FW1B • Photonic Crystal Cavities and Waveguides—Continued	FW1C • Quantum Optical Measurement and Quantum Technologies I—Continued	FW1D • Long Wavelength Mid-IR to THz Fiber Devices I—Continued	FW1E • Microscopy and OCT I— Continued		
FW1A.6 • 09:30 Simulation of Photonic-Crystal Devices Fab- ricated by Pattern-Integrated Interference Lithography, Matthieu C. Leibovici ¹ , Thomas K. Gaylord ¹ ; ¹ Electrical and Computer Engi- neering, Georgia Inst. of Technology, USA. We simulated the fabrication by pattern-integrated interference lithography (PIIL) of three photonic- crystal devices and calculated their transmission spectra. The performance of the PIIL-produced devices is comparable to that of their idealized counterparts.	FW1B.5 • 09:30 Post-Process Tuning of Slow Light Photonic Crystal Waveguides, Sebastian A. Schulz ¹ , Kashif M. Awan ² , Dennis X. Liu ^{1,3} , Ksenia Dolga- leva ² , Jeremy Upham ¹ , Robert W. Boyd ^{1,4} , 'De- partment of Physics, Univ. of Ottawa, Canada; ² School of Electrical Engineering and Computer Science, Univ. of Ottawa, Canada; 'Department of Engineering, Univ. of Waterloo, Canada; ⁴ Inst. of Optics, Univ. of Rochester, USA. We present a wet chemical method for tuning the slow light operating wavelength of silicon photonic crystal waveguides. This procedure compensates for the effects of slab thickness - and systematic hole radii - variations.	FW1C.6 • 09:30 Observing angular deviations in light beam reflection via weak measurements, Michele Merano ¹ , Gaurav Jayaswal ¹ , Giampaolo Mis- tura ¹ ; ¹ Fisica e Astronomia, Universita degli Studi di Padova, Italy. We report the first observation of the angular Goos-Hänchen shift for a Gauss- ian light beam via weak value amplification. Weak measurements faithfully amplify the effect at any angle of incidence, even at Brewster.	FW1D.5 • 09:30 Invited Nonlinear Properties of Silicon Optical Fibers from Telecoms to the Mid-infrared, Anna C. Peacock ¹ , Li Shen ¹ , Priyanth Mehta ¹ , Noel Healy ¹ ; 'Univ. of Southampton, UK. The non- linear transmission properties of hydrogenated amorphous silicon core fibers are character- ized for short pulse propagation spanning the telecoms band to the edge of the mid-infrared regime.	FW1E.6 • 09:30 D Withdrawn.		
FW1A.7 • 09:45 Fabrication of waveguides in doped organic/ Silica hybrid materials using femtosecond laser pulses, Adriano J. Otuka ¹ , Paulo Ferreira ¹ , Diego S. Manoel ² , Dimas R. Vollet ² , Dario A. Donatti ² , Fabio S. De Vicente ² , Cleber R. Men- donça ¹ ; Instituto de Física de São Carlos, Uni- versidade de São Paulo, Brazil, ² Departamento de Física, Universidade Estadual Paulista, Brazil. Fabrication of waveguides using femtosecond laser micromachining technique in Rhodamine B-doped organic/Silica hybrid materials is dem- onstrated. Optical properties and microscopic images were measured; and the produced waveguides present 2.3 dB/mm total loss.	FW1B.6 • 09:45 Nonlinear Processes in One-Dimensional Photonic Crystal with Graphene-based De- fect, Maria Antonietta Vincenti ¹ , Domenico de Ceglia ¹ , Marco Grande ² , Antonella D'Orazio ² , Michael Scalora ³ ; ¹ US Army AMRDEC, Na- tional Research Council, USA; ² Dipartimento di Ingegneria Elettrica e dell'Informazione (DEI), Politecnico di Bari, Italy; ³ Charles M. Bowden Research Laboratory, AMRDEC, US Army RDE- COM, USA. We investigate nonlinear properties of one-dimensional photonic crystal with a graphene-based defect, and show that the field enhancement provided by the photonic crystal cavity enhances third harmonic generation and lowers the threshold of nonlinear processes.	FW1C.7 • 09:45 Observation of the Imbert-Fedorov effect via weak value amplification, Michele Merano ¹ , Giampaolo Mistura ¹ , Gaurav Jayaswal ¹ ; 'Di- partimento di Fisica e Astronomia, Università degli Studi di Padova, Italy. We report the first experimental observation of the Imbert-Fedorov shift via weak value amplification.		FW1E.7 • 09:45 Illumination coding for fast Fourier Ptychog- raphy with large field-of-view and high-resolu- tion, Lei Tian ¹ , Laura Waller ¹ ; ¹ Univ. of California Berkeley, USA. Fourier Ptychography recovers high-resolution phase and amplitude from low- resolution images taken at varying illumination angles. Here, we describe multiplexing methods for reduction of both acquisition time and data size requirements.		

10:00–10:30 Coffee Break and Unopposed Exhibit Time, Arizona Ballroom, Salons 1-7

10:00–14:00 Exhibit Open, Arizona Ballroom, Salons 1-7
FiO

FW1F • Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard I—Continued

Application of Second Harmonic Generation Imaging for Visualization of the Characteristics of Corneal Stromal Collagen in Normal and Diseased Eyes, Naoyuki Morishige'; 'Ophthalmology, Yamaguchi Univ., Japan. Second harmonic generation has been applied to non-invasively visualize collagen lamellae of the excised human corneal tissue. This imaging technique revealed the three-dimensional characteristics of collagen lamellae in the normal and diseased corneas. Tucson Ballroom Salon B

LW1G • Resonators and Photonic

Tucson Ballroom Salon C

Tucson Ballroom Salon D

LS

LW1H • Attosecond Science II-Continued

LW11 • Filamentation I—Continued

LW1G.4 • 09:30

Crystals II—Continued

Effect of Metallic Antenna Shape on the Near-Field Coupling to a Semiconductor Quantum Well, Michael R. Gehl', Sander Zandbergen¹, Ricky D. Gibson¹, Muriel Béchu², Nima N. Esfahani^{2,4}, Joshua Hendrickson³, Jasmine Sears³, Patrick Keiffer¹, Martin Wegener², Galina Khitrova¹; ¹College of Optical Sciences, Univ. of Arizona, USA, ²Institut für Angewandte Physik, Institut für Nanotechnologie, Karlsruhe Inst. of Technology, Germany; ³Air Force Research Laboratory, Wright Patterson Air Force Base, USA; ⁴Solid State Scientific Corporation, USA. Arrays of metallic antennae with wire, square and split-ring shapes are fabricated on a near-surface quantum well. The hybrid system is investigated using photoluminescence, transmission and transient pump-probe experiments.

LW1G.5 • 09:45

In Situ Growth of Self-assembled Indium Islands in Close Proximity to Semiconductor Quantum Emitters, Ricky D. Gibson¹, Michael Gehl¹, Sander Zandbergen¹, Jasmine Sears¹, Nima N. Esfahani^{2,3}, Patrick Keiffer¹, Joshua Hendrickson³, Martin Wegener⁴, Galina Khitrova¹; 'College of Optical Sciences, Univ. of Arizona, USA; ²Sensors Directorate, Air Force Research Laboratory, USA; ²Solid State Scientific Corporation, USA; ⁴Institut für Angewandte Physik, Institut für Nanotechnologie, Karlsruhe Inst. of Technology, Germany. Self-assembled indium islands on III-V quantum dot (QD) samples with a 7nm cap show a 4x enhancement in the peak intensity of the PL offering a bottom-up platform for studying the resonant coupling between plasmonic structures and semiconductor quantum emitters.

Tabletop Nanometer Extreme Ultraviolet Imaging in an Extended Reflection Mode, Daniel Adams¹, Bosheng Zhang¹, Matthew Seaberg¹, Dennis Gardner¹, Elisabeth Shanblatt¹, Margaret M. Murnane¹, Henry C. Kapteyn¹; ¹/NIST/ JILA/CU, USA. We demonstrate the most general, highest fidelity reflection mode coherent diffractive imaging to date. Using a high harmonic tabletop source with ptychographyand keyhole-coherent diffraction techniques, images are reconstructed with < 1 nm axial resolution.

LW1I.4 • 09:30

Terahertz Generation in Two-color Photoionization and Its Microscopic Mechanism, Yong Sing You', Ki-Yong Kim', Dongwen Zhang²; ¹Inst. for Research in Electronics and Applied Physics, Univ. of Maryland, USA; ²Department of Physics, National Univ. of Defense Technology, China. We verify the microscopic mechanism of terahertz emission in two-color laser-produced plasmas by simultaneously measuring laser pulse phases, plasma currents, and terahertz radiation.

LW1I.5 • 09:45

Multiple High-Intensity THz Generation by Consecutive Two-Color Filaments in Air, Traian Dascalu¹, Razvan Ungureanu¹, Gabriel Cojocaru¹, Oana Grigore¹, Romeo Banici¹, Mihai Dinca¹, ¹Natl Inst Lasers Plasma & Radiation Phys, Romania. Multiple high-intensity THz pulses with controlled delay and energy ratio are generated in air by two-color filamentation technique. Two THz transients with energy up to 1 µJ and delay controlled in the 1ps-100ps range are reported.

08:30-12:30 OSA Members and Families: Arizona-Sonora Desert Museum Tour, Bus will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 08:30.

10:00–10:30 Coffee Break and Unopposed Exhibit Time, Arizona Ballroom, Salons 1-7

10:00–14:00 Exhibit Open, Arizona Ballroom, Salons 1-7

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
10:30–11:30 FW2A • Imaging Presider: Rongguang Liang; Univ. of Arizona, USA	10:30–12:00 FW2B • Materials for Integrated Photonic O Presider: Ray Chen; Univ. of Texas at Austin, USA	10:30-12:00 FW2C • Quantum Optical Measurement and Quantum Technologies II Presider: Alexander Sergienko, Boston Univ., USA	10:30–11:45 FW2D • Long Wavelength Mid-IR to THz Fiber Devices II Presider: Stuart Jackson; Macquarie Univ., Australia	10:30–12:00 FW2E • Coherence and Polarization II Presider: Amit Ashok; Univ. of Arizona, USA
FW2A.1 • 10:30 Super-resolution optical disks beyond 10 Terabytes, Yaoyu Cao ¹ , Xiangping Li ¹ , Min Gu ¹ ; 'Centre for Micro-photonic, Faculty of Science, Engineering and Technology, Swinburne Univ. of Technology, Australia. A novel super-resolution optical two-beam technique compatible with a standard optical drive is applied in the recording and reading process to enable the 10 Terabytes optical disk development for ultra-high density optical data storage.	FW2B.1 • 10:30 Integrated nanophotonics based on nanowire plasmons and atomically-thin material, Ken- neth M. Goodfellow ¹ , Ryan Beams ¹ , Chitraleema Chakraborty ² , Lukas Novotny ³ , Anthony N. Vami- vakas ¹ ; ¹ Inst. of Optics, Univ. of Rochester, USA; ² Materials Science, Univ. of Rochester, USA; ³ Photonics Laboratory, ETH Zürich, Switzerland. We demonstrate a nanophotonic integrated cir- cuit element composed of a silver nanowire and single-layer molybdenum disulfide (MoS ₂). We show that the nanowire can both excite MoS ₂ photoluminescence via plasmons and collect decaying excitons as plasmons.	FW2C.1 • 10:30 Invited Interfacing Optical Quantum Memories with Telecommunication Optical Fibres, Hugues de Riedmatten ^{1,2} , ¹ ICFO -The Inst. of Photonic Sciences, Spain; ² ICREA, Spain. We present experiments interfacing optical quantum memories based on rare-earth doped solids and cold atomic gases with telecom fibres, using a widely non degenerate quantum light source and an integrated optics quantum frequency conversion device.	FW2D.1 • 10:30 Invited New Materials and Structures: Expanding the Properties of Optical Fibres, Daniel Lancaster ¹ , Tanya M. Monro ¹ ; 'Univ. of Adelaide, Australia. The development of optical glasses and fibres with extended transmission and with novel emission characteristics will be described. Ad- vances in optical fibre fabrication, new routes to introducing structure into the fibre cross-section, and a diverse range of new device architectures will be described.	FW2E.1 • 10:30 Tutorial C Passive and Active Polarization Imaging: Fundamentals, Phenomenology, and Sys- tems, J. Scott Tyo'; 'Univ. of Arizona, USA. This tutorial will review the fundamentals of sensing the vector nature of the optical field, explore phenomenology in applications ranging from microscopy to astronomy, and present state- of-the-art imaging polarimeters.
FW2A.2 • 10:45 Demonstration of an optimised focal field with long focal depth and high transmission obtained with the Extended Nijboer-Zernike theory, Lei Wei ¹ , Sander Konijnenberg ¹ , Nitish Kumar ¹ , Paul Urbach ¹ ; 'Optics Research Group, Delft Univ. of Technology, Netherlands. We present an optimization algorithm based on the Extended Nijboer Zernike theory to design the pupil mask which gives an extended depth of focus with high lateral resolution. We also have demonstrated the outcomes of the algorithm experimentally.	FW2B.2 • 10:45 Direct patterning of C-shape arrays on graphene oxide thin films using direct laser printing, Xiaorui Zheng ¹ , Zheng Cao ¹ , Baohua Jia ¹ , Ling Qiu ² , Dan Li ² , Min Gu ¹ ; 'Centre for Micro-Photonics and CUDOS, Swinburne Univ. of Technology, Australia; 'Department of Materi- als Engineering, Monash Univ, Australia. Planar C-shape arrays are fabricated on a high quality graphene oxide thin film using direct laser print- ing method. Minimum fabricated feature size is 500 nm, making the structures potentially useful for near infrared photonic devices.			J. Scott Tyo is a professor in the College of Optical Sciences at the University of Arizona. He received the PhD degree form the Univer- sity of Pennsylvania in 1997. He served from 1994-2001 in the US Air Force, and was in the ECE Department at the University of New Mexico from 2001-2006. Prof. Tyo directs the Advanced Sensing Lab at OSC and his research
FW2A.3 • 11:00 Reflection-based Diffraction Phase Micros- copy using Broadband Illumination, Christo- pher A. Edwards ¹ , Basanta Bhaduri ¹ , Gabriel Popescu ¹ , Lynford Goddard ¹ ; 'Univ. of Illinois at Urbana-Champaign, USA We present a reflec-	FW2B.3 • 11:00 O Optical Phase Control at the Nanometer Scale in Vanadium Dioxide, Alain Hache ¹ , Tran Vinh Son ¹ , Real Vallee ² , Cheikhou Ba ² , Gisia Beydaghyan ¹ ; ¹ Physics, Universite de Moncton, Canada ² COPL Universite Javal Canada	FW2C.2 • 11:00 Observation of the temporal Talbot effect for entangled photons, Ogaga D. Odele ¹ , Joseph M. Lukens ¹ , Carsten Langrock ² , Martin M. Fejer ² , Daniel E. Leaird ¹ , Andrew M. Weiner ¹ ; ¹ Purdue Univ., USA; ² Stanford Univ., USA. We demon-	FW2D.2 • 11:00 Comparison of Fluoroindate and Fluorozir- conate Rare Earth Doped Glasses for Mid-IR Lasers, Richard S. Quimby ¹ , Mohammed Saad ² ; ¹ Worcester Polytechnic Inst., USA; ² Thorlabs, USA. Temperature dependent fluorescence	Advanced Sensing Lab at USC, and his research interests span many areas of imaging and sens- ing including polarimetry, spectral imagery, and coherence at optical wavelengths. Prof. Tyo is a fellow of SPIE, OSA, and the IEEE.

strate the generation of two-photon correlation

trains based on spectral filtering of broadband

biphotons and for the first time verify the

temporal Talbot effect for entangled photons.

lifetimes for Dy and Er doped fluoroindate and

fluorozirconate glasses are measured and fit to

multiphonon relaxation theory. The two glasses

are more similar than expected, and Dy decays

anomalously rapidly.

Urbana-Champaign, USA. We present a reflec-

tion-based broadband illumination quantitative

phase imaging technique that provides halo-free

images of opaque samples with sub-nanometer

spatial and temporal noise.

Canada; ²COPL, Universite Laval, Canada.

Large refractive index changes during phase

transition in vanadium dioxide are exploited

to control the phase of a light at 1300 nm over

distances of less than 100 nm without altering

other properties of light.

Tucson Ballroom Salon A Tucson Ballroom Salon B

FW2G • General Optics in Biology and

Presider: Pietro Ferraro; Istituto Nazionale di

Three-dimensional holographic tracking approach based

on full-field complex wavefront matching, Pasquale Mem-

molo^{1,2}, Lisa Miccio¹, Francesco Merola¹, Paolo A. Netti²,

Pietro Ferraro¹; ¹CNR - Istituto Nazionale di Ottica, Italy;

²Center for Advanced Biomaterials for HealthCare@CRIB, Is-

tituto Italiano di tecnologia, Italy. A new holographic tracking

method capable to calculate, simultaneously and in a single

step, all the spatial coordinates is presented. Experimental

tests on trapped particles and living cells, flowing into a

microfluidic channel, are accomplished.

10:30-11:45

Medicine III

FW2G.1 • 10:30

Ottica (CNR), Italy

FiO

10:30-11:00

FW2F • Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard II

Presider: Robert Zawadzki; Univ. of California Davis, USA

The Limits of Human Vision, Josef Bille¹; ¹Ruprecht-Karls-Universitat Heidelberg, Germany. Adaptive optics and femtosecond laser surgical systems have allowed the measurement and correction of the optical properties of the human eye, extending the knowledge of the limits of human vision.

FW2G.2 • 10:45

Low-Spatial Coherence Chaotic Cavity Laser for Speckle-Free Full-Field Imaging, Brandon Redding¹, Alexander Cerjan¹, Xue Huang², Douglas Stone¹, Minjoo Lee², Michael Choma^{3,4}, Hui Cao¹; ¹Applied Physics, Yale Univ., USA; ²Electrical Engineering, Yale Univ., USA; ³Diagnostic Radiology, Yale School of Medicine, USA; ⁴Biomedical Engineering, Yale Univ., USA. We demonstrate electrically-pumped semiconductor-based chaotic microcavity lasers. The cavity shape is designed to maximize the number of lasing modes, providing emission with low spatial coherence and high-power per mode for high-speed, speckle-free full-field imaging applications.

FW3F.1 • 11:00 Invited

FW3F • Low-cost Ophthalmic

Instrumentation and Imaging

Presider: Ann Elsner; Indiana Univ., USA

11:00-12:00

mobileVision: A Face-mounted, Voice-activated, Nonmydriatic "Lucky" Ophthalmoscope, Adam Samaniego¹, Vivek Boominathan¹, Ashutosh Sabharwal¹, Ashok Veeraraghavan¹; *IECE, Rice Univ., USA.* We present mobileVision, a portable, smartphone-based ophthalmoscopy system intended to reduce the barriers to ocular pathology screening in developing regions.

FW2G.3 • 11:00

Partially Coherent Deconvolution Tomography for Reconstructing Weakly Scattering Objects, Micah Jenkins¹, Thomas K. Gaylord¹; 'Georgia Inst. of Technology, USA. A novel algorithm is presented for reconstructing weakly scattering objects using partially coherent illumination. The method is validated using a photonic crystal fiber as a test object and will be useful for applications in biology. Tucson Ballroom Salon C

10:30-12:00

LW2H • Quantum Information III Presider: Julian Sweet, Air Force Research Laboratory, USA

LW2H.1 • 10:30 Invited

LW2H.2 • 11:00 Invited

deterministic device.

Experimental Realisation of a Measurement-based Noise-

less Linear Amplifiers, Thomas Symul¹; ¹Australian National

Univ., Australia. I show that measurement based noiseless

linear amplifier can extend the range of QKD, and then

demonstrates it can be used to perform state amplifica-

tion and cloning better than the best theoretically possible

Quantitative Quantum Communication: Practical Realizations of Exponential Quantum Advantage, Juan Miguel Arrazola¹, Norbert Lutkenhaus¹; ¹Univ. of Waterloo, Canada. Quantum Communication Complexity Theory discovered protocols showing significant advantage of quantum over classical communication using highly entangled states of qubits. We present a coding scheme that can realize the advantage using simple laser pulses.

10:30–12:00

LS

LW21 • Solid-State Optical Physics Presider: Ricky Gibson; Univ. of Arizona, USA

Tucson Ballroom

Salon D

LW2I.1 • 10:30

Multiple-time-scale blinking and radiative efficiency of InAs/GaAs microcavity-quantum dot single photon sources, Marcelo I. Davanco^{1,2}, Carl S. Hellberg³, Serkan Ates^{1,2}, Antonio Badolato⁴, Kartik Srinivasan¹; ¹Center for Nanoscale Science and Technology, National Inst of Standards & Technology, USA; ²Maryland Nanocenter, Univ. of Maryland, USA; ³Center for Computational Materials Science, Code 6390, Naval Research Laboratory, USA; ⁴Department of Physics and Astronomy, Univ. of Rochester, USA. Photon correlations measured over 12 decades in time reveal multiple-time-scale blinking in InAs/GaAs microcavity-quantum dot single-photon sources and enable estimation of quantum dot radiative efficiency. Non-unity efficiencies suggest nanofabrication may produce traps responsible for blinking.

LW2I.2 • 10:45

Coherence Properties of a Single-Mode Polariton Laser, seonghoon kim¹, Bo Zhang¹, Zhaorong Wang¹, Christian Schneider², Sebastian Brodbeck², Sven Hofling², Martin Kamp², Hui Deng¹; ¹Univ. of Michigan, USA; ²Univ. of Wuerzburg, Germany. First and second-order coherence functions of a zero-dimensional microcavity are measured. In contrast to a two-dimensional system, intensity fluctuations of a polariton laser are significantly reduced.

LW2I.3 • 11:00 Withdrawn.

FiO/LS 2014 • 19-23 October 2014

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FW2A • Imaging—Continued	FW2B • Materials for Integrated Photonic—Continued	FW2C • Quantum Optical Measurement and Quantum Technologies II—Continued	FW2D • Long Wavelength Mid-IR to THz Fiber Devices II— Continued	FW2E • Coherence and Polarization II—Continued
FW2A.4 • 11:15 C Highly Sensitive and Linear Electron-injection Detectors at the Telecomm Wavelength, Vala Fathipour ¹ , Sung Jang ¹ , Robert Brown ¹ , Hooman Mohsen ¹¹ ; ¹ Northwestern Univ., USA. We pres- ent results from electron-injection detectors showing un-gated detection of extremely low optical powers at telecomm-band. These devices show excellent linearity over 40 dB dynamic range and a noise equivalent sensitivity of 13 photons at 220K.	FW2B.4 • 11:15 Withdrawn.	FW2C.3 • 11:15 Nonlocal Wavefunction Collapse for a Single Particle Using Homodyne Measurement without Post-selection, Maria Fuwa', Shuntaro Takeda', Marcin Zwierz ² , Howard Wiseman ³ , Akira Furusawa'; 'Applied Physics, The Univ. of Tokyo, Japan; 'Physics, Univ. of Warsaw, Poland; 'Physics, Griffith Univ., Australia. We demon- strate the nonlocal wavefunction collapse for a single particle, the idea of which dates back to Einstein's first argument on his concerns about quantum theory, by performing EPR-steering using heralded single photons.	FW2D.3 • 11:15 Invited Synthesis, Characterization and Applications of Mid-infrared Optical Fibers, Pierre Lucas ¹ ; ¹ Univ. of Arizona, USA. Chalcogenide glasses constitute the only class of amorphous materials with full infrared transparency. The composi- tional landscape available to produce these glasses is large and offers a wide potential for optimizing the development of optical fibers.	FW2E.2 • 11:15 InviteD Bio-Inspired Spectral-Polarization Imaging Sensors for Medical Applications, Viktor Gruev ^{1,2} ; 'Computer Engineering, Washington Univ. in St. Louis, USA; 'Electrical Engineering, Washington Univ. in St Louis, USA. Inspired by the vision system of several marine species, we have developed image sensor capable of re- cording all three fundamental properties of light by monolithically integrating metallic nanowires with vertically stacked photodetectors.
FW2A.5 • 11:30 Withdrawn.	FW2B.5 • 11:30 Transparent and Nanostructred CdS Filsm for Integrated Systems in Facades, Ana L. Leal- Cruz ¹ , Alicia Vera-Marquina ¹ , Ignacio Zaldivar ³ , Carlos I. Villa Velázquez Mendoza ² , Luis A. García ¹ , Benito R. Noeriga ¹ , Alejandro Garcia- Juarez ¹ , Dainet Berman Mendoza ¹ , Armando G. Rojas ¹ , ¹ Departamento de Investigación en Fisica, Universidad de Sonora, Mexico; ² Labo- ratorio de Micro y Nanomateriales, Universidad de Sonora, Mexico; ³ INAOE, Mexico. The aim of this work is process and characterize transparent and semitransparent CdS nanostructured films via chemical bath deposition, with potential application in solar cells for integrated systems in facades.	FW2C.4 • 11:30 Single-atom quantum switch for coherent light pulses, Andrew Parkins ¹ , Takao Aoki ² ; ¹ Univ. of Auckland, New Zealand; ² Waseda Univ., Japan. We propose a scheme for single-atom, quantum control of the direction of propagation of a multi-photon coherent optical pulse inci- dent, via a tapered fiber, upon a microtoroidal whispering-gallery-mode resonator.		
	FW2B.6 • 11:45 O Optical properties of annealed CdS-nano- structured films for solar cells, Alicia Vera- Marquina ¹ , Ana Lilia Leal Cruz ¹ , Dainet Berman ¹ , Ignacio Zaldivar ² , Luis A. García ¹ , Alejandro García ¹ , Armando G. Rojas ¹ ; 'Investigación en Física, Universidad de Sonora, Mexico; ² Elec- trónica, Instituto Nacional de Astrofísica, Optica y Electrónica, Mexico. The effect of annealing process on optical properties of cadmium sulfide thin films is presented. Optical behavior of CdS thin films were evaluated by UV-Visible spectros- copy and band gap values were calculated by approximation using Tauc plot.	FW2C.5 • 11:45 Quantum State Manipulation of Single- Photon Wave Packets, Laura J. Wright ¹ , Michal Karpinski ¹ , Brian J. Smith ¹ ; ¹ Univ. of Oxford, UK. We experimentally demonstrate deterministic modification of the spectral-temporal mode structure of quantum states of light. The method is based upon a unitary transformation imple- mented with electro-optic phase modulation and which preserves the non-classical nature of the single photon.		FW2E.3 • 111:45 C Coherence engineering for microscopy, Laura Waller ¹ , Lei Tian ¹ ; ¹ Univ. of California Berkeley, USA. We describe the connection between phase imaging methods that use illumination coherence patterning via coded illumination at the source plane. Our framework is in phase space, the wave-optical analogy to light field space-angle distributions.
	12:00–13:30 Un	opposed Exhibit Only Time, Arizona Ba	allroom, Salons 1-7	
		•	· · · · · · · · · · · · · · · · · · ·	
	12:00–13:30 JW	3A • Joint Poster Session II, Arizona B.	allroom, Salons 1-7	

Wednesday, 22 October

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D	
Fi	0	LS		
FW3F • Low-cost Ophthalmic Instrumentation and Imaging—Continued	FW2G • General Optics in Biology and Medicine III—Continued	LW2H • Quantum Information III— Continued	LW2I • Solid-State Optical Physics— Continued	
	FW2G.4 • 11:15 Multimodal Imaging of Breast Cancer Xenografts in a Mouse Mammary Window Chamber Model to Investigate Chemotherapy Response, Hui M. Leung ^{1,2} , Rachel L. Scha- fer ³ , Arthur F. Gmitro ^{1,2} ; ¹ College of Optical Sciences, Univ. of Arizona, USA; ² Department of Medical Imaging, Univ. of Ari- zona, USA; ³ Department of Biomedical Engineering, Univ. of Arizona, USA. Multispectral imaging was used to follow blood oxygenation changes in breast cancer xenografts in mice treated with chemotherapy. The correlation between tissue perfusion, glycolytic metabolism and blood oxygenation was also investigated with nuclear and MR imaging techniques.		LW2I.4 • 11:15 Excitonic Dark States in Single Atomic Layer of Transi- tion Metal Dichalcogenide, Ziliang Ye ¹ , Ting Cao ¹ , Kevin O'Brien ¹ , Hanyu Zhu ¹ , Xiaobo Yin ¹ , Yuan Wang ¹ , Steven G. Louie ¹ , Xiang Zhang ¹ ; ¹ Univ. of California, USA. We experi- mentally discover a series excitonic dark states in two-photon excitation spectra of single-layer WS2. The findings quantita- tively agree with the calculated excitonic state and suggest a large exciton binding energy of 0.7 eV.	
FW3F.2 • 11:30 Invited NETRA-G: Towards a Subjective Self-Refraction, Vitor Pamplona ¹ , Rahul Modi ¹ , Nadine Solaka ² , Hillary Gaiser ² , Ran He ² , Bruce Moore ² ; TeyeNetra Inc, USA; ² New England College of Optometry, USA. We discuss NETRA-G schieved accuracies of .48D on sphere and .30D on cylinder. Visual acuity was 20/20 or better in 70% of all cases and 20/25 or better for 90%.	FW2G.5 • 11:30 Phase-sensitive Bloch surface wave sensing, Yuhang Wan ¹ , Liya Shu ¹ , Xuekun Zhu ¹ , Zheng Zheng ¹ ; ¹ School of Electronic and Information Engineering, Beihang Univ., China. A detec- tion scheme that leverages the sharp phase variation by the exitation of Bloch surface wave is demonstrated, which has good sensitivity and is ready to monitor fast signal changes due to its simple setup.	LW2H.3 • 11:30 Invited Quantum Communication in Space, Rupert Ursin ¹ , Domi- nique Elser ² ; 'Austrian Academy of Sciences, Austria; ² Max Planck Institute Science of Light, Germany. I will present recent feasibility studies demonstrating quantum commu- nication on ground, over a 140 km free-space link as well as studies proving the feasibility to perform such kind of experiments in space.	LW2I.5 • 11:30 Large Enhancement of Nonlinear Terahertz Absorption in Intrinsic GaAs by Plasmonic Nano-Antennas, Young-Gyun Jeong ^{1,2} , Michael J. Paul ¹ , Seung-Hyun Kim ^{3,4} , Ki-Ju Yea ³ , Dai-Sik Kim ² , Yun-Shik Lee ¹ ; ¹ Physics, Oregon State Unix, USA; ² Center for Subwavelength Optics and Department of Physics and Astronomy, Seoul National Unix, Republic of Korea; ³ Physics, Chungnam National Unix, Republic of Korea; ⁴ GRAST, Chungnam National Unix, Republic of Korea. We demonstrate remarkably strong nonlinear THz effects in an intrinsic GaAs wafer patterned with a nanometer-width slot antenna array. The antenna near-field reaches 20 MV/ cm due to the huge field enhancement in the plasmonic nano-structure.	
	TURN CELL PHONES OFF		LW2I.6 • 11:45 Self-Organized Emitters in a Single Broad Area Diode Laser by Wavlength-Selective Feedback, Nils Werner ¹ , Christof Zink ¹ , Andreas Jechow ¹ , Axel Heuer ¹ , Ralf Menzel ¹ ; 'Inst. of Physics and Astronomy, Photonics, Univ. of Potsdam, Germany. Self-organized emitters are realized in a single broad area diode laser by utilizing a spectral beam combining external cavity. The wavelength-selective feedback yields to an array-like behavior with 38 independent emitters.	

12:00–13:30 Unopposed Exhibit Only Time, Arizona Ballroom, Salons 1-7

12:00–13:30 JW3A • Joint Poster Session II, Arizona Ballroom, Salons 1-7

Wednesday, 22 October

JOINT FIO/LS

12:00–13:30 JW3A • Joint Poster Session II

JW3A.1

Spectroscopic Ellipsometry Investigation of Oxygen Impurities Influence on Cobalt, Olena Polianska'ı, Vasyl S. Stashchuk'ı; 'Faculty of Physics, Chair of Optics, Taras Shevchenko National Univ. of Kyiv, Ukraine. This work is devoted to investigations of Co - O compounds' optical properties by the Beatty spectroscopic ellipsometry method. The energy dependencies of optical characteristics were calculated using measured ellipsometry parameters and analysed.

JW3A.2

Angular and Azimuthal Ellipsometry of Indium Tin Oxide Films, Taras Hanulia', Leonid Poperenko', Olga Lopatynska', Vasyl Lendel'?, 'Physics, Taras Shevchenko National Univ. of Kyiv, Ukraine; ²The Faculty of Mechanics and Mathematics, Taras Shevchenko National Univ. of Kyiv, Ukraine. We investigated the optical properties of indium tin oxide thin (ITO) films, produced by reactive magnetron sputtering. Ellipsometric parameters were determined by laser ellipsometer. The refractive index and thickness of ITO films were calculated.

JW3A.3

Feasibility Study of Localized Plasmon Based Raman Signal Enhancements Using Silver Nanoislands, hyerin song', Kyujung Kim'; 'Department of Cognitive Mechatronics Engineering, Pusan National Univ., Republic of Korea. Varied-thick nanoislands fabricated by thermal annealing methods were used for Raman enhancements. For experiments, SERS of Au-NPs attached dsDNAs was measured on nanoislands. Consequently, we quantified the correlation factors between initial film thickness and SERS.

JW3A.4

Reflective Liquid Crystal Display Designed Optically for High Performance, Jin Seog Gwag', Gyu Jin Choi'; 'Department of Physics, Yeungnam Univ, Republic of Korea. We propose a reflective liquid crystal designed optically with thicker cell gap which is preferred for high productibility. It consists of a half-wave retardation film, a quarter-wave film, and an LC cell.

JW3A.5

Color Schlieren Imaging with Monochromatic Sources, Jan L. Chaloupka'; 'Department of Physics and Astronomy, Univ. of Northern Colorado, USA. Color, direction-indicating schlieren images are generated with a two-path system using monochromatic light. Two simultaneous views of physical processes are captured that can be combined into a single, synthesized color composite.

JW3A.6

Polarization Independent Tunable Band Pass Filter in Terahertz Regime, Han-Wei Zhang', Po-Sheng Fang', Hsuan-Yin Chen', Chuck Lee'; 'Photonics, National Sun Yat-sen Univ, Taiwan. In this work, using choleseric liquid crystal, we demonstrate a polarization independent tunable THz band pass filter based on one-dimensional photonic crystal cavity.

JW3A.7

Freeform Diffractive Structure Writing through Maskless Lithography, Lee Johnson', Melissa Zaverton', Tyler Hashimoto', Tom Milster', Youngsik Kim', Alex Felli'; 'Optical Sciences, The Univ. of Arizona, USA. Printing of diffractive structures on 3D surfaces has been demonstrated using focal adjustment during iline maskless lithography. A diffractive pupil for asymmetric astrometric distortion correction was fabricated on spherical mirrors with diameters uo to 50mm.

JW3A.8

Adaptive Optics Systems at the Large Binocular Telescope, Julian C. Christou¹, Simone Esposito⁴, Sebastian Rabien², Tom Herbst⁵, Phil Hinz³, John Hill¹, Douglas Miller¹, Gustavo Rahmer¹, Guido Brusa¹, Juan C. Guerra¹, Mark R. Wagner¹, Christian Veillet¹; ¹Large Binocular Telescope Observatory, USA; ²Max-Planck-Institut für extraterrestrische Physik, Germany; ³Steward Observatory, Univ. of Arizona, USA; ⁴Arcetri Astrophysical Observatory, Italy; ⁵Max-Planck-Institut für Astronomie, Germany. We describe the different Adaptive Optics systems on the Large Binocular Telescope making use of the adaptive secondary mirrors and different wavefront sensors. System performances will be discussed.

JW3A.9

Subsurface Damage Characterization with Nonlinear High Numerical Microscopy, Phat Lu¹, Tom Milster¹; 'Coll. of Optical Sciences, Univ. of Arizona, USA. Sub-surface damage characterization occurs in semiconductor device fabrication, like diamond turning and milling. Third harmonic generation (THG) microscopy can help to characterize subsurface damage, because nanometer sized asperities caused by defects amplify the THG signal.

JW3A.10

Coherence Imaging in LED Holographic Reconstruction, Jian-Wen Dong'; 'Physics and Engineering, Sun Yat-Sen Univ., China. We will show you the new method on encoding CGH by introducing fast Fourier transform and affine transform, and also analyze the coherence of LED reconstructed light in order to improve the image quality.

JW3A.11

Resonant and Non-Resonant Operations in Double-Groove Gratings, Kota Ito¹, Takayuki Matsu¹, HIDEO IIZUKA¹; 'Toyota Central R&D Labs, Japan. We compare roles of propagating modes in resonant and non-resonant dielectric double-groove gratings that exhibit spatially asymmetric diffraction phenomena by accounting for the mode profiles and the coupling strength between the modes and diffraction orders

JW3A.12

Label - free Fluorescence Lifetime Imaging of Microfluidic Device Based Three-dimensional Cardiac Tissue Metabolism, Rupsa Datta', Christopher Heylman', David Tran', Steven C. George', Enrico Gratton'; 'Univ. of California Irvine, USA. In this work, we show mapping of metabolic activity and non-invasive monitoring of drug response of a microphysiological tissue system in a PDMS microfluidic device chamber by fluorescence lifetime imaging of NADH, an endogenous fluorophore

JW3A.13

Cholesterol Crystals with Gold Nanoparticles: Photothermally Induced Effects, Lilia C. Cour-

roll, Ricardo E. Samad²; ¹Universidade Federal de São Paulo (UNIFESP), Brazil; ²IPEN/CNEN-SP, Brazil. Gold nanoparticles embedded in cholesterol crystals promote localized heating under intense light illumination at the surface plasmon resonance absorption band, allowing material displacement from their original position, showing potential applications in cardiology.

JW3A.14

Proposal of a new imaging method with trapped gold nano particles and the properties of multi-photon emission, Akira Eguchi^{1,3}, Phat Lu¹, Tom Milster¹, Koen Visscher²; ¹College of Optical Sciences, The Univ. of Arizona, USA; ²Department of Physics, The Univ. of Arizona, USA; ³Canon Inc, Japan. We propose a new concept to obtain a super-resolution resolution image with optically trapped gold nano particles (GNPs) and multi-photon emission (MPE). The properties of MPE from GNPs are described.

JW3A.15

Development of Optical Microscopy with a 121.6 nm Source, Thiago Jota', Youngsik Kim', Dolaphine Kwok', Tom Milster', Dakota S. Luepke'; 'College of Optical Sciences, Univ. of Arizona, USA. A new microscope with a Hydrogen Lyman-a source at 121.6 nm is presented with respect to its initial development. Advances in the optical and mechanical design, tolerancing, and practical solutions are presented.

JW3A.16

Combination of structural and functional examination techniques of cellular cultures, Maria Muravyeva', Yuri Zakharov'; 'General physics, UNN of Lobachevsky, Russian Federation. Upgrade of a laser scanning microscope was made for expansion of standard research methods. An opportunity of digital holograms recording in scanning operating mode of a microscope in parallel with Calcium imaging technique was achieved. Mathematical simulation was given.

JW3A.17

Resolution Enhancement in Two-photon Microscopy by Applying Structured Line Illumination, Chi-Deng Lin¹, Chia-Hua Yeh¹, Su-Yu Chen¹; 'National Central Univ., Taiwan. To enhance the resolution of two-photon microscopy, structured illumination was applied with a line scanning geometry. Using the square proportionality between two-photon emission and excitation intensity, a ~3-fold resolution improvement was shown in the results.

JW3A.18

Numerical investigation of plasmonic nearfield localization by simple nanoapertures for subwavelength imaging, Wonju Lee¹, Kyujung Kim², Donghyun Kim¹; ¹School of Electrical and Electronic Engineering, Yonsei Univ., Republic of Korea; ²Department of Nanofusion Technology, Pusan National Univ., Republic of Korea. Localization properties by various nanoapertures were explored in the near field for applications in super-resolved fluorescence imaging. The smallest and most symmetric field on the scale of 50-100 nm was obtained by square nanoapertures.

JW3A.19

Slow-light generation and waveform correction via Brillouin scattering in tellurite fiber, Kenshiro Nagasaka¹, Guanshi Qin², Takenobu Suzuki¹, Yasutake Ohishi¹; Yæsearch Center for Advanced Photon Technology, Toyota Technological Inst., Japan²; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jlin Univ., China. Slow-light generation and waveform correction are theoretically investigated in tellurite fiber. Our results shows that a minimum pulse broadening factor of 0.93 with an acceptable pulse distortion for 80 ns incident Gaussian pulse is achieved by optimizing the doublet Brillouin gain lines.

JW3A.20

Application of Photonic crystal Fiber Sagnac loop in DWDM as a Flat top Comb-Filter, Santosh Kumar¹, Ajay Kumar, Sanjeev K. Raghuwanshi; 'Indian School of Mines, India. The paper includes the theoretical demonstration of optical comb filter based on the Sagnac loop interferometer of Photonic Crystal Fiber. These types of devices can be advantageous for the Dense Wavelength division Multiplexing (DVDDM) applications.

JW3A.21

An Elliptical Core Birefringence Tellurite Microstructured Optical Fiber, Dinghuan Deng', Daisuke Sega', Tonglei Cheng', Weiqing Gao', Xiaojie Xue', Takenobu Suzuki', Yasutake Ohishi'; 'Research Center for Advanced Photon Technology, Toyota Technological Inst., Japan. An elliptical core birefringence tellurite microstructured optical fiber was demonstrated and experimentally characterized by a white light spectral interferometric technique over a wide spectral range.

JOINT FiO/LS

JW3A • Joint Poster Session II—Continued

JW3A.22

Phase Fluctuation Extraction from Optical Frequency-Domain Reflectometry, Mudabbir Badar¹, Iwashita Katsushi¹; ¹Department of Electronics and Phonics Systems Engineering, Kochi Univ. of Technology, Japan. We have given a novel method to extract phase noise from optical frequency domain reflectrometry (OFDR), which can be used to cancel the phase noise in OFDR or it can be used to measure laser parameters i.e. laser linewidth.

IW3A 23

A broadband linearization in microwave photonics link based on integrated parallel Mach-Zehnder modulator, Jian Li¹, Song Yu¹, Wanyi Gu¹; ¹State Key Laboratory of Information Photonics and Optical Communications, Beijing Univ. of Posts and Telecommunications, China. A broadband linearized microwave photonics link is presented based on integrated parallel Mach-Zehnder modulator with single sideband modulation. IMD3 and second-order distortions are linearized simultaneously. Power fading problem is also effectively eliminated.

JW3A.24

Isolated Polarization Singularities in Optical Beams, Enrique J. Galvez', Brett L. Rojec', Kory Beach'; 'Physics and Astronomy, Colgate Univ., USA. We demonstrate a method to produce optical beams with any type of C-point polarization singularity. We also propose a spherical representation that maps all types of C-points onto points on the surface of the sphere.

JW3A.25

Multiple Image Reconstruction in Arbitrary Position Using Double-Phase Retrieval And Modulation Schemes, Hsuan-Ting Chang', Che-Hsien Lin', Chien-Yue Chen'; 'National Yunlin Univ of Science and Tech, Taiwan. We proposed an algorithm of reconstructing multiple images with the double phase-only-function architecture based on the double phase retrieval and modulation algorithms in the Fresnel transform domain. In addition, the low crosstalk among the reconstructed images is achieved.

JW3A.26

Silicon Nitride 1x8 Power Splitter for Mid-Infrared Applications, Jianwei Mu', Pao-Tai Lln', Lin Zhang', Xiaoman Duan', Anuradha M. Agarwal', Lionel C. Kimerling'; 'M.I.T, USA. We present a silicon nitride 1x8 power splitter based on a multimode interference coupler for mid infrared wave applications. Simulation shows a 9.3 dB insertion loss over a broad wavelength range (70 nm)

JW3A.27

Nonlinear optical effects in hybrid a:Si-liquid

crystal device, Beatriz A. Martínez Irivas¹, Maximino L. Arroyo¹, Marcela M. Mendez¹, Ruben Ramos-Garcia^{1,2}, David Iturbe^{1,2}, ¹BUAP, Mexico; ²INAOE, Mexico. Abstract. Nonlinear refractive index and nonlinear absorption of hybrid device are measured with the Z-scan. The space charge field produced in the a:Si reorients the L.C. Both responses can be obtained at mW power levels.

JW3A.28

Antimony Sulfoiodide as Novel Material for Photonic Crystals, Anna Starczewska', Marian Nowak', Piotr Szperlich', Iwona Bednarczyk², Krystian Mistewicz', Miroslawa Kepinska', Piotr Duka'; Inst. of Physics - Center for Science and Education, Silesian Univ. of Technology, Poland; ²Department of Materials Science, Silesian Univ. of Technology, Poland. Semiconducting ferroelectrics promise construction of crystals with tuned photonic band gap. Such structures were synthesized by self-assembling SiO2 spheres, followed by melt infiltration with antimony sulfoiodide and the removal of SiO2 spheres by chemical etching.

JW3A.29

Plasmonic Photocatalyst for Photodegradation with Spinning Optical Disk Reactor, Wen

Ting Hsieh¹, Yu Lim Chen¹, I Da Jiang¹, Li Chung Kuo¹, Min Lun Tseng², Hao Ming Chen^{1,3}, Chih Kai Chen³, Hung Ji Huang⁴, Ru-Shi Liu³, Din Ping Tsai^{1,5}; ¹Department of Physics, National Taiwan Univ., Taiwan; ²Graduate Inst. of Applied Physics, National Taiwan Univ., Taiwan; ³Department of Chemistry, National Taiwan Univ., Taiwan; ⁴Instrument Technology Research Center, National Applied Research Laboratories, Taiwan; ⁵Research Center for Applied Sciences, Academia Sinica, Taiwan. An efficient and novel photocatalytic reactor for environmental treatment was fabricated with zinc oxide nanorods growing on optical disk substrate as the photocatalyst. Plasmonic photocatalysis was also demonstrated to enhance the photodegradation efficiency.

JW3A.30

Electronic spectra and lateral photocurrent in Si/Ge heterostructures with quantum dots, Yurii Hyrka', Serhiy Kondratenko'; 'Chair of optics, OSA Student chapter, Ukraine. The

work generalizes the results of studies of morphological, optical and electrical properties of SiGe/Si nanoheterostructures. It is shown that the photoconductivity of nanoheterostructures SiGe/Si in the infrared range.

JW3A.31

Compact Two-Dimensional Multipass GaAs Optical Cavity with a Long Path Length, Takehiro Fukushima¹, Susumu Shinohara², Satoshi Sunada³, Takahisa Harayama⁴, Kenichi Arai², Kazuyuki Yoshimura², Koichiro Sakaguchi¹, Yasunori Tokuda¹: ¹Department of Information and Communication Engineering, Okayama Prefectural Univ., Japan; ²NTT Communication Science Laboratories, NTT Corporation, Japan; ³Faculty of Mechanical Engineering, Kanazawa Univ., Japan; ⁴Department of Applied Physics, Waseda Univ., Japan. We fabricated and tested a compact multipass GaAs optical cavity with a round-trip path length of approximately 3.7 mm. The optical light injected into the cavity was found to propagate along a stable ray trajectory.

JW3A.32

Refractive index sensor based on slow light in photonic crystal on SOI platform, Preeti Rani', Yogita Kalra', Ravindra K. Sinha'; 'Delhi Technological Univ., India. We report the slow light enhanced photonic crystal sensor to measure sucrose concentration in (PAm)-hydrogel sucrose solution. The proposed structure arrangement on SOI platform can also behave as a refractive index sensor.

JW3A.33

All-optical switching of Pendellösung effect in 1D porous silicon photonic crystal, Vladimir B. Novikov¹, Sergey E. Svyakhovskiy¹, Boris I. Mantsyzov¹, Anton I. Maydykovskiy¹, Tatiana V. Murzina¹; ¹Cuantum electronics, M. V. Lomonosov Moscow State Univ., Russian Federation. Optical switching of the Pendellözung effect in a porous silicon 1D photonic crystal at Bragg diffraction in Laue geometry is observed experimentally under an external optical illumination or direct thermal heating.

JW3A.34

Metal-dielectric Structure Anti-Reflective Coating in the Mid-Wave Infrared, Joshua Hendrickson¹, Nima Nader², Boyang Zhang³, Hou-tong Chen⁴, Junpeng Guo³; ¹Sensors Directorate, US Air Force Research Laboratory, USA; ²Solid State Scientific Corporation, USA: ³Department of Electrical and Computer Engineering, Univ. of Alabama in Huntsville, USA: ⁴Center for Integrated Nanotechnologies, Los Alamos National Laboratory, USA, A subwavelength metal-dielectric structure for anti-reflection in the mid-wave infrared regime has been designed and experimentally verified. Applied to high index germanium substrates, less than 5% power reflection is achieved over a wide angular range.

JW3A.35

An Integrated-Design Approach to Shorter Wavelength Quantum Cascade Lasers, Gregory Triplett¹; ¹Univ. of Missouri-Columbia, USA. In this work, we explore a novel approach that incorporates lasing and nonlinear conversion within the same QCL waveguided region using orientation-patterned substrates. The synthesis of these integrated devices and initial results are presented.

JW3A.36

Phase response of guided mode resonances, Michael J. Theisen', Thomas G. Brown'; 'The Inst. of Optics, USA. We analyze, and measure, the phase response of guided mode resonant structures. We consider designs based on grating coupled leaky modes in a silicon on insulator platform. Modes near cutoff show strong amplitude and phase anomalies.

JW3A.37

Optical performance with multi-zone multifocal designs with natural and corrected ocular aberrations, Maria Vinas¹, Carlos Dorronsoro¹, Susana Marcos¹, ¹Visual Optics & Biophotonics Lab, Instituto De Optica (CSIC), Spain. We evaluate though-focus optical quality and depth of focus with presbyopic multizone corrections of radial/ and angular zones. The effect of the natural aberrations and its correction on their performance was also explored.

JW3A.38

Intraocular Retinal Prostheses: Monocular Depth Perception in the Low Resolution Limit, Noelle R. Stiles¹, Ben McIntosh², Armand R. Tanguay³, Mark S. Humayun⁴; ¹Computation and Neural Systems, California Inst. of Technology, USA: ²Electrical Engineering-Electrophysics, Univ. of Southern California, USA; ³Electrical Engineering-Electrophysics, Chemical Engineering and Material Science, Biomedical Engineering, Opthalmology, Physics and Astronomy, and Neuroscience Graduate Program, Univ. of Southern California, USA: ⁴Opthalmology, Cell and Neurobiology, and Biomedical Engineering, Univ. of Southern California, USA. Depth perception via monocular cues was studied with a reach and grasp task in a retinal prosthesis simulator at low resolution. Results indicate that depth perception may be possible with retinal prostheses implanted only monocularly.

JW3A.39

Treatment of Biodiesel Contaminants Through Solar Photo-Fenton Oxidation Using a Stand-Alone Photovoltaic System, Miriam F. Oliveira¹, Whelton B. Santos¹, Fernando F. Vieira¹, Geralda C. Lima¹, Carlos P. Lima¹, Tâmara P. de Oliveira¹; ¹Departamento de Física / Engenharia, Universidade Estadual da Paraíba, Brazil. Biodiesel effluents were treated via photo-Fenton oxidation absorbing sunlight through a catalytic reactor connected to a stand-alone photovoltaic system, decreasing of almost 34% the biodiesel contaminants while storing energy to aid the whole process.

JW3A.40

3-D Analysis of Pinhole Size Optimization for a Confocal Signal-based Wavefront Sensor, Md. Atikur R. Jewel¹, Vyas Akondi¹, Brian Vohnsen¹; *Univ. College Dublin, Ireland*. The performance of a confocal signal-based wavefront sensor is determined by the chosen pinhole. Here, a numerical 3-D analysis has been performed to find the most appropriate pinhole for the wavefront sensing.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10 F i O	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
13:30–15:30 FW4A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning II Presider: John Koshel; College of Optical Sciences/Univ Arizona, USA	13:30–15:30 FW4B • Integrated Photonics Presider: Dieter Knoll; IHP GmbH, Germany	13:30–15:30 FW4C • Quantum Optical Measurement and Quantum Technologies III Presider: Fabio Sciarrino; Universita degli Studi di Roma La Sapienza, Italy	13:30–15:15 FW4D • Novel Fiber And Communications Devices Presider: TMisha Brodsky; AT&T Labs, USA	13:30–15:30 FW4E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods I Presider: Laszlo Veisz; Max-Planck- Institut fur Quantenoptik, Germany
FW4A.1 • 13:30 Invited Integrated Impedance-matched Photonic Dirac-cone Metamaterials, Yang Li ¹ ; ¹ Harvard Univ., USA. We experimentally demonstrate zero index of an in-plane Dirac-cone metamaterial at 1550 nm. This design can serve as an on- chip platform to explore the exotic physics of Dirac-cone metamaterials and its applications in integrated photonics.	FW4B.1 • 13:30 Invited Agile Silicon Photonic Systems for Sensing and Telecommunications, Axel Scherer ¹ ; 'California Inst. of Technology, USA. This talk will discuss agile silicon photonic systems for sensing and telecommunications.	FW4C.1 • 13:30 Invited Entanglement and Simplified Quantum Information Operations, Raj Patel ¹ , Sacha Kocsis ¹ , Joseph Ho ¹ , Adam Bennet ¹ , Franck Ferreyrol ^{1,3} , Michael W. Hall ¹ , Tim Ralph ² , Geof- frey Pryde ¹ ; ¹ Griffith Univ., Australia; ² The Univ. of Queensland, Australia; ³ Institut d'Optique, France. We report a linear optical Fredkin gate using an entanglement resource and an expanded Hilbert space. Additionally we demonstrate verification of weak entanglement which does not require trust in the measurement devices or their operators.	FW4D.1 • 13:30 The Optical Capacitor : A Cavity with an extended broad-band mode using chirped fiber-Bragg gratings, Sébastien Loranger ¹ , Mathieu Gagné ¹ , Raman Kashyap ^{1,2} ; 'Engineer- ing Physics, Polytechnique Montreal, Canada; ² Electrical Engineering, Polytechnique Montreal, Canada. We present a novel cavity using chirped fiber Bragg gratings in which an oscillating mode's wavelength dependency is eliminated making. Unlike a Fabry-Perot resonator, this cavity has no frequency constraints within the operating bandwidth. FW4D.2 • 13:45	FW4E.1 • 13:30 Invited Laser Accelerator on a Chip (>300MeV/m): A Path to TeV Energy Scale Physics and Table Top Coherent X-rays, Robert L. Byer'; 'Stanford Univ, USA. We report on the first observation and progress of high-gradient acceleration of electrons in lithographically fabricated dielectric micro-structures. Accelerators on a chip enable attosecond physics from the XUV to the X-ray region in the near term and open the possibility of TeV energy scale physics in the future.

FW4A.2 • 14:00 Withdrawn.

FW4B.2 • 14:00 Invited

Silicon Nitride Optomechanical Crystals, Kartik Srinivasan¹, Marcelo I. Davanco¹, Karen Grutter¹; ¹National Inst of Standards & Technology, USA. We present silicon nitride optomechanical crystals where few GHz frequency phonons and 980 nm wavelength photons coherently interact. Fabrication improvements, cryogenic testing, and optimized geometries for multimode applications like quantum frequency conversion will be discussed.

FW4C.2 • 14:00

Demonstration of Dynamic Squeezing Gate for Continuous-Variable Quantum Information Processing, Hisashi Ogawa¹, Kazunori Miyat¹, Hidahiro Yonezawa², Petr Marek³, Radim Filip³, Akira Furusawa¹; ¹Applied Physics, The Univ. of Tokyo, Japan; ²Engineering and Information Technology, The Univ. of South Wales, Australia; ³Optics, Palacký Univ., Czech Republic. We report demonstration of a dynamically controllable squeezing gate for a dynamically controllable squeezing gate for a dynamically controllable squeezing gate for a dynamically controlorder and can be used as a feedforward in teleportation-based non-Gaussian quantum gate.

FW4D.3 • 14:00

Electrical Power Setting for Optical Single Side-band Millimeter-wave Generation, Maryam Niknamfar', Mehdi Shadaram'; 'Electrical and Computer Engineering, Univ. of Texas at San Antonio, USA. A scheme is suggested to generate single side-band millimeter-wave signal. Mathematical analysis is considered for electrical power adjustment. Two Mach-Zehnders are used to up-convert the radio frequency to the 60 GHz range.

wave carrier of 5 GHz generated with a DFB laser biased in the low laser threshold current region, Alejandro Garcia-Juarez¹, Ignacio Zaldivar², María del Rocío Gómez Colín¹, Luis A. García¹, Ana Lilia Leal Cruz¹, Alicia Vera-Marquina¹, Armando G. Rojas¹, Roberto Gómez Fuentes¹, Dainet Berman Mendoza¹; ¹Departamento de Investigación en Física, Universidad de Sonora, Mexico; ²Departamento de Electrónica, Instituto Nacional De Astrofísica Óptica y Electrónica, Mexico. A wireless transmission system using a couple of CPW-fed G-shaped monopole antennas is reported in this paper. The microwave carrier is generated with a DFB laser biased in the low laser threshold current region.

Development of a High Repetition Rate Laser-plasma Accelerator for Application to Ultrafast Electron Diffraction, Jerome Faure¹, Benoit Beaurepaire¹, Agustin Lifschitz¹, Zhaohan He², Alexander Thomas², Karl Krushelnick²; ¹LOA, France; ²Univ. of Michigan, USA. We are developing a laser-wakefield accelerator operating at kHz repetition rate and producing electron bunches suitable for electron diffraction. We will show first experimental results and plans for increasing energy to the 5 MeV level. Tucson Ballroom Salon A

Tucson Ballroom Salon B

501011

13:30–15:00 FW4F • Ocular Aberrations and Wavefront Sensing Presider: Melanie Campbell; Univ. of Waterloo, Canada

FW4F.1 • 13:30 Invited

Evolution of Ocular Wavefront Sensing, Jim Schwiegerling'; ¹Univ. of Arizona, USA. Techniques for measuring ocular aberrations have evolved over the past few decades. These techniques and their capabilities and limitations are explored.

FW4G • Microscopy and OCT II Presider: Sava Sakadzic; Harvard Medical School, USA

FW4G.1 • 13:30

13:30-15:30

FiO

Wide-field axial plane optical microscopy, Tongcang Li^{2,3}; Sadao Ota^{2,3}; Jeongmin Kim^{1,3}; Zi Jing Wong^{1,3}; Yuan Wang^{2,3}; Xiaobo Yin⁴; Xiang Zhang^{2,3}; ¹Department of Mechanical Engineering, Univ. of California, USA; ²NSF Nanoscale Science and Engineering Center, Univ. of California, USA; ³Materials Sciences Division, Lawrence Berkeley National Laboratory, USA; ⁴Department of Mechanical Engineering, Univ. of Colorado, USA. We present axial plane optical microscopy (APOM) that enables wide-field imaging of samples along an axial plane perpendicular to the focal plane of the microscope's objective lens.

FW4G.2 • 13:45

Superresolution Two-photon Image with Quasi-comb

Structured Illumination, Chia-Hua Yeh¹, Szu-Yu Chen¹, Cheng-En Tan¹; 'National Central Univ., Taiwan. To improve the lateral resolution of two-photon microscopy (TPM), quasi-comb intensity modulation is applied to point-scanning two-photon microscopy to perform structured illumination. The theoretical models were established and a 1.85-fold resolution improvement was successfully demonstrated. Tucson Ballroom Salon C

LW4H • Resonators and Photonic

Presider: Alexander Poddubny; Ioffe Inst.,

LS

13:30–15:15 LW4I • Filamentation II Presider: Andre Mysyrowicz; LOA, France

Tucson Ballroom

Salon D

LW4H.1 • 13:30 Invited

Russian Federation

13:30-15:30

Crvstals III

Nanocavity and Nanobeam Waveguide Optomechanics, Paul E. Barclay¹; ¹Physics and Astronomy, Univ. of Calgary, Canada. Recent demonstrations of optical nanocavities optimized for torque sensing, and diamond based nanobeams designed for coupling to diamond nitrogen vacancy centers will be presented. Their application to sensing and quantum optics applications will also be reviewed. LW4I.1 • 13:30 Invited

Air Waveguides Generated by Femtosecond Filaments, Jared K. Wahlstrand¹, Nihal Jhajj¹, Eric Rosenthal¹, Reuven Birnbaum¹, Howard M. Milchberg¹; ¹Univ. of Maryland at College Park, USA. Femtosecond filaments deposit energy in gases, producing a significant hydrodynamic response. We harness this effect to generate an optical waveguide in air with a millisecond lifetime and use it to guide a delayed laser pulse.

Wavefront Aberrations of the Eye During the Development of Refractive Error, Nancy J. Coletta¹, Susana Marcos³, David Troilo³; ¹Vision Science, New England College of Optometry, USA; ²Instituto de Optica, CSIC, Spain; ³College of Optometry, SUNY, USA. Higher-order aberrations of marmoset eyes were measured during visual experience with lenses or occluders. Treated eyes had increased asymmetric aberrations, implying that alignment of the eye's optical surfaces requires normal visual experience during development.

FW4G.3 • 14:00

High-Sensitivity Quantitative Phase Microscopy Using Spectral Encoding, Ruibo Shang¹, Shichao Chen¹, Yizheng Zhu¹; ¹Virginia Tech, USA. A quantitative phase microscope is demonstrated using spectrally-encoded interferometric phase modulation. The technique offers speckle-free, high sensitivity (~0.14nm) optical pathlength measurement at high acquisition speed. It is well suited for precise quantification of dynamic processes.

Coupling Spins in Quantum Dots to Photonic Crystal Cavities, Sam Carter¹, Timothy M. Sweeney², Patrick M. Vora², Mijin Kim³, Chul Soo Kim¹, Lily Yang², Peter G. Brereton⁴, Dmitry Solenov², Sophia E. Economou¹, Thomas L. Reinecke¹, Allan S. Bracker¹, Dan Gammon¹; *Thaval Research Laboratory*, USA; *TRC Research Associate at the Naval Research Laboratory, USA; ³Sotera Defense Solutions, Inc., USA; ⁴US Naval Academy, USA. We have incorporated charge-controlled quantum dots and pairs of coupled dots into photonic crystal cavities and made use of the spin degree of freedom. Optical measurements demonstrate potential as a spin-photon interface and photon source.*

Rogue Events in the Atmospheric Turbulence of Multifilaments, Gunter Steinmeyer¹, S. Birkholz¹, C. Brée², A. Demircan³; ¹Max Born Inst., Germany; ²Weierstrab-Institut für Angewandte Analysis und Stochastik, Mohrenstr, Germany; ³Institut für Quantenoptik, Leibniz-Universitat Hannover, Germany. The appearance of short-lived flashes in the transverse plane of multifilaments is discussed. These flashes follow a heavy-tail fluence distribution and are intimately related to atmospheric turbulence in a gas cell.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
	FiO					
FW4A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning II—Continued	FW4B • Integrated Photonics— Continued	FW4C • Quantum Optical Measurement and Quantum Technologies III—Continued	FW4D • Novel Fiber And Communications Devices— Continued	FW4E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods I— Continued		
FW4A.3 • 14:15 Rotational symmetry and nanoparticle oligomers as a platform for Fano resonances and chirality, Ben Hopkins ¹ , Alexander N. Pod- dubny ^{2,3} , Andrey E. Miroshnichenko ¹ , Yuri S. Kivshar ^{1,3} , 'Nonlinear Physics Centre, Australian National Univ., Australia; ² loffe Physical-Techni- cal Inst. of the Russian Academy of Sciences, Russian Federation; ³ National Research Univ. for Information Technology, Mechanics and Op- tics, Russian Federation. The regime of strong coupling is often avoided when designing nanoparticle scattering systems. Here we show that discrete rotational symmetry enables simple mode analysis of such systems, allowing design of chiral interference and Fano resonances.		FW4C.3 • 14:15 Characterization of Hong-Ou-Mandel Bunched States by Quantum Homodyne Tomography, Yosuke Hashimoto ¹ , Makino Kenzo ¹ , Jun-ichi Yoshikawa ¹ , Hideaki Ohdan ¹ , Peter van Loock ² , Akira Furusawa ¹ ; ¹ Department of Applied Physics, School of Engineering, The Univ. of Tokyo, Japan; ² Inst. of Physics, Johanes Gutenberg-Universität Mainz, Germany. We ex- perimentally demonstrate quantum homodyne tomography of Hong-Ou-Mandel bunched states, which are created by dynamically adjust- ing emission timings of two heralded single photons using coupled cavities.	FW4D.4 • 14:15 All-fiber Tunable Multifunctional Device Based On Selectively Liquid-Crystal-Infiltrated Photonic Crystal Fiber, Yamile Cardona Maya ¹ , Pedro Torres ¹ ; 'Universidad Nacional de Co- lombia, Colombia. In this work we present an all-fiber tunable multifunctional device based on the phenomenon of resonant tunneling in photonic crystal fibers selectively infiltrated with liquid crystal (LCPCF).			
FW4A.4 • 14:30 Long Lifetime Optical Recording in Gold- nanorod-dispersed Organically Modified Ceramic Nanocomposites, Qiming Zhang ¹ , Zhilin Xia ^{2,3} , Xiangping Li ¹ , Yi-Bing Cheng ³ , Min Gu ¹ ; ¹ Swinburne Univ. of Technology, Australia; ² Department of Materials Engineering, Monash Univ., Australia; ³ School of Materials Science and Engineering, Wuhan Univ. of Technology, China. Gold nanorods have been incorporated into organically modified ceramic nanocomposites for long lifetime optical recording. An enhance- ment in the thermal stability of gold nanorods and hence the lifetime of recorded information have been demonstrated.	FW4B.3 • 14:30 O Operation bandwidth of forward stimulated Brillouin scattering in silicon Brillouin active membrane waveguides, Heedeuk Shin', Jona- than Cox ² , Robert Jarecki ² , Andrew Starbuck ² , Wenjun Qiu ³ , Zheng Wang ⁴ , Peter Rakich ¹ ; 'Applied Physics, Yale Univ., USA; '2Sandia National Laboratories, USA; 'Physics, MIT, USA; 'Electrical and computer engineering, Univ. of Texas at Austin, USA. We studied the opera- tion bandwidth of forward SBS with the optical waveguide width in Brillouin-active-membrane waveguides. Narrow waveguide width yields Brillouin features over wide frequency range, but waveguides with broad width induce less nonlinear absorption.	FW4C.4 • 14:30 Tomographic measurement of a (105 x105)- dimensional entangled state, Eliot Bolduc ¹ , Genevieve Gariepy ¹ , Jonathan Leach ¹ ; ¹ Phys- ics, Inst. of Physics and Quantum Sciences, UK. We report on a novel method for the efficient characterization of high-dimensional pure quantum states and show the results of its application on a spatially entangled state generated through SPDC.	FW4D.5 • 14:30 8x, 12x, and 23x Spectral Compression by All- Fiber, Classic, and Similaritonic Techniques, Hrach Toneyan ¹ , Aram Zeytunyan ¹ , Levon Mou- radian ¹ , Vasili Tsakanov ^{1,2} , Frederic Louradour ³ , Alain Barthelemy ³ , Ruben Zadoyan ⁴ ; ¹ Ultrafast Optics Laboratory, Faculty of Physics, Yerevan State Univ., Armenia; ² CANDLE Synchrotron Research Inst., Armenia; ³ Departement Pho- tonique, XLIM Institut de Recherche, France; ⁴ Technology & Applications Center, Newport Corporation, USA. We implement femtosecond pulse spectral compression through all-fiber and classic techniques by self-phase modulation, and similaritonic technique by sum-frequency generation, and experimentally demonstrate 8x, 12x, and 23x ratios for the process, respectively.	FW4E.3 • 14:30 Invited O Multi-GeV Laser-plasma Electron Accel- erators, Michael C. Downer'; 'Univ. of Texas at Austin, USA. Laser-plasma acceleration is now entering an era of petawatt lasers, tenuous plasmas and multi-GeV electron energies. I will review initial results in this regime, and discuss plasma diagnostics needed to understand, optimize and scale them.		
FW4A.5 • 14:45 Withdrawn.	FW4B.4 • 14:45 Tapered air-core Bragg waveguides for spectrally resolved fluorescence detection on a chip, Aaron D. Melnyk', Torrey Thiessen', Brian Drobot', Trevor Allen', Ray DeCorby'; 'Univ. of Alberta, Canada. We describe a micro- spectrometer based on a tapered channel Bragg waveguide, and show that it is well-suited to spectrally resolved fluorescence detection in optofluidic micro-systems. Experimental results for small-volume emitters (fluorescent beads) are reported.	FW4C.5 • 14:45 Coherence Area Profiling in Multi-Spatial- Mode Squeezed States, Benjamin Lawrie ¹ , Raphael Pooser ¹ ; ¹ <i>Quantum Information Science</i> <i>Group, Oak Ridge National Laboratory, USA.</i> Sub-shot-noise microcantilever displacement sensitivity achieved with multi-spatial-mode squeezed light requires unprecedented spatial control of the quantum-correlated modes. We demonstrate a simple approach to map these modes, enabling sub-shot noise microcantilever displacement measurements.	FW4D.6 • 14:45 Soliton stability in multimode fibers, Shaival Buch ¹ , Yuzhe Xiao ¹ , Govind Agrawal ¹ ; ¹ Univ. of Rochester, USA. We study numerically stability of optical solitons in few-mode fibers. While a single fundamental soliton propagating in any fiber mode is stable, simultaneous propagation of multiple solitons becomes unstable under certain conditions.			

Wednesday, 22 October

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D	
F	iO	LS		
FW4F • Ocular Aberrations and Wavefront Sensing—Continued	FW4G • Microscopy and OCT II—Continued	LW4H • Resonators and Photonic Crystals III—Continued	LW4I • Filamentation II—Continued	
	FW4G.4 • 14:15 Coherent anti-Stokes Raman scattering microscopy with low depletion powers by cylindrical-polarized beams, Wei Li ¹ , Zheng Gong ¹ , Ya Liu ¹ , Yu Sun ¹ , Jiansheng Liu ¹ , Zheng Zheng ¹ ; 'School of Electronic and Information Engineering, Beihang Univ, China. A super-resolution, cylindrical-polar- ized-beam-excited coherent anti-Stokes Raman scattering (CP-CARS) microscopy has been proposed to achieve higher lateral resolutions (17 nm) with lower required depletion power (2.8×10 ⁷ W/cm ²) than the scheme using linearly polar- ized depletion beams.			
FW4F.3 • 14:30 Invited Night myopia revisited with Adaptive Optics, Pablo Artal'; 'Lab. Optica, Universidad de Murcia, Spain. The causes and magnitude of night myopia, the tendency to near-sighted in low light, were not well understood. We have used adaptive optics instruments to study eye's optics and vision under low luminance both monocular and binocularly.	FW4G.5 • 14:30 Full-field Interferometric Confocal Microscopy using a VCSEL Array, Brandon Redding ¹ , Yaron Bromberg ¹ , Michael Choma ^{2,3} , Hui Cao ¹ ; ¹ Applied Physics, Yale Univ., USA; ² Diag- nostic Radiology, Yale School of Medicine, USA; ³ Biomedical Engineering, Yale Univ., USA. We present an interferometric confocal microscope using a low-spatial-coherence VCSEL array. Spatial coherence gating provides continuous virtual pinholes allowing an entire en face plane to be imaged in a snapshot at camera limited frame rate.	LW4H.3 • 14:30 Invited A Nanophotonic Quantum Phase Switch with a Single Atom, Jeff Thompson'; 'Harvard Univ., USA. We discuss a new platform for cavity QED consisting of a single Rubidium atom trapped near a nanoscale optical resonator. The com- bination of good atomic coherence and strong atom-photon interactions enables a variety of applications.	LW4I.3 • 14:30 Invited Laser Filament-induced Ice Multiplication under Cirrus Cloud Conditions, Jean Pierre Wolf ¹ , Jerome Kasparian ¹ , Mary Matthews ¹ , Thomas Leisner ² , Ludger Woeste ³ ; 'Univer- site de Geneve, Switzerland; ² Karlsruhe Inst. of Technology, Germany; ³ Freie Universitaet Berlin, Germany. Laser filaments interacting with cirrus like ice crystals produce a large number of small secondary ice particles by re-condensation of the released water vapor. This new phenomenon drastically modifies its radiative forcing.	
	FW4G.6 • 14:45 O-STORM: Quantitative Super-resolution Microscopy from Localization of Reversibly Switchable Single-Molecules, Robert Nieuwenhuizen ¹ , Mark Bates ² , Bernd Rieger ¹ , Sjoerd Stallinga ¹ ; ¹ Department of Imaging Physics, Delft Univ. of Technology, Netherlands; ² Department of NanoBiophoton- ics, Max Planck Inst. for Biophysical Chemistry, Germany. We make localization microscopy with reversibly switchable fluorophores a quantitative imaging technique by measur- ing the average number of activation events per marker from the buildup of spatial image correlations during image acquisition.			

Wednesday, 22 October

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FW4A • Three-Dimensional Optical Structure Design, Fabrication and Nanopatterning II—Continued	FW4B • Integrated Photonics— Continued	FW4C • Quantum Optical Measurement and Quantum Technologies III—Continued	FW4D • Novel Fiber And Communications Devices— Continued	FW4E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods I— Continued
FW4A.6 • 15:00 Throughput Enhancement in Femtosecond Laser Ablation of Silicon by N-type Doping, Oiang Cao ¹ , Juqiang Fang ¹ ; 'Beijing Inst. of Technology, China. Experiments show femto- second laser ablation enhancement of silicon through N-type doping. We found that the material removal is affected by doping concen- trations rather than doping types, due to initial free electron density.	FW4B.5 • 15:00 Electrically Tunable Optical Delay Line in a Polymer Bragg Grating, Oscar D. Herrera ¹ , Kyung-Jo Kim ¹ , Roland Himmelhuber ¹ , Robert Norwood ¹ , Nasser Peyghambarian ¹ ; ¹ Univ. of Arizona, USA. A hybrid electro-optic polymer waveguide Bragg grating was designed and fab- ricated. Slow light propagation can be achieved by tuning the carrier wavelength around the reflection bandwidth. 30ps delays at <10V can be expected in transmission.	FW4C.6 • 15:00 Consideration on the Nature of Wavefunction Collapse in Entangled Ghost Imaging, John F. Reintjes ¹ , Mark Bashkansky ² , 'Sotera Defense Solutions, Inc., USA; ² Optical Sciences Division, Naval Research Laboratory, USA. We examine the restrictions that are placed on the form of the collapsed wavefunction in the configuration of entangled ghost imaging in order to maintain agreement with non-collapse models.	FW4D.7 • 15:00 A Novel Power Play in the Supercontinuum Generation Induced by Modulational Instabil- ity in Saturable Nonlinear Media, Nithyanan- dan K ¹ ; ¹ Pondicherry Univ., India. The supercon- tinuum generation is observed to behave in a unique in saturable nonlinearity, such that the broadband is observed at shortest distance for pumping at saturation power, in comparison to all other pump power configurations.	FW4E.4 • 15:00 Invited Multi-GeV Laser Plasma Accelerators Us- ing Plasma Waveguides and Integration of Multiple Acceleration Modules, Jeroen van Tilborg', A. J. Gonsalves', H. S. Mao', K. Nakamura', C. Benedetti', C. B. Schroeder', C. S. Toth', J. Daniels', D. E. Mittelberger', S. Steinke', N. H. Matlis', B. Shaw', S. S. Bulanov', J. L. Vay', Cameron G. Geddes', E. Esarey', W. P. Leemans'; 'Lawrence Berkeley National Labora- tory, USA. Laser Plasma Accelerators offer high gradients important to compact machines. We present results towards high energies via staged
FW4A.7 • 15:15 C Perfluoropolyether-Based Hydrophobic AFM Tips Fabricated by Two-Photon Polymeriza- tion, Francesca Bragheri ¹ , Tommaso Zandrini ² , Carmela De Marco ³ , Raffaella Suriano ³ , Stefano Turri ³ , Roberto Osellame ^{1,2} , 'Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Italy; ² Dipartimento di Fisica, Politec- nico di Milano, Italy; ³ Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Italy. Two-photon po- lymerization technology is used to fabricate atomic force microscopy tips with tailorable geometry and chemical properties. In particular hydrophobic and chemically resistant tips for optimized wet imaging are manufactured in a perfluoropolyether-based resist.	FW4B.6 • 15:15 Measurement of Cavity Length in Cavity- Resonator-Integrated Guided-Mode Reso- nance Filter, Junichi Inoue', Tomohiro Kondo', Kenji Kintaka ² , Kenzo Nishio', Yasuhiro Awatsuji', Shogo Ura'; 'Kyoto Inst. of Technology, Japan; ² National Inst. of Advanced Industrial Science and Technology, Japan. A cavity-resonator-inte- grated guided-mode resonance filter is a kind of narrowband filters, which uses a resonance effect of a waveguide cavity. The cavity length was measured experimentally for estimating the response time of the filter.	FW4C.7 • 15:15 Super-resolving single-photon number-path- entangled state and its generation, Michelle Lollie ^{1,2} , Wei Feng ³ , Kebei Jiang ¹ , M. Suhail Zubaiy ^{3,4} , Jonathan P. Dowling ^{1,3} ; ¹ Physics and Astronomy, Hearne Inst. for Theoretical Physics, Louisiana State Univ., USA; ² Physics and Optical Engineering, Rose-Hulman Inst. of Technology, USA; ³ Beijing Computational Science Research Center, China; ⁴ Physics and Astronomy, Inst. for Quantum Science and Engineering, Texas A&M Univ., USA. A field in a single-photon state can carry multifold phase information. Two protocols are shown that generate this desired state with different probabilities dependent on the detector being used with applications to quantum lithography.		acceleration integrating two independent mod- ules, and multi-GeV e-beams from the BELLA 1Hz petawatt-class laser.
	15:30–16:00	Coffee Break, Tucson and Arizona Ba	Ilroom Foyer	

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D	
FiO		LS		
	FW4G • Microscopy and OCT II—Continued	LW4H • Resonators and Photonic Crystals III—Continued	LW4I • Filamentation II—Continued	
	FW4G.7 • 15:00 Super-resolved axial imaging based on extraordinary light transmission using linear nanoaperture arrays, Wonju Lee', Jong-ryul Choi ² , Kyujung Kim ³ , Youngjin Oh ¹ , Donghyun Kim ³ , Young Ki	EW4H.4 • 15:00 Inited Breaking the Mirror Symmetry of Spontaneous Emission Via Spin-orbit Interaction of Light, Arno Rauschenbeutel ¹ ; ¹ Vienna Center for Quantum Science and Technology, Vienna Univ. of Technology, Austria. Light with strong intensity gradi- ents at the wavelength scale exhibits a significant polarization component along its direction of propagation. The interaction of quantum emitters with such light fields leads to new and surprising effects.	LW4I.4 • 15:00 Remote Collection of Optical Signals using Air Wave- guides, Eric Rosenthal'; 'Univ. of Maryland at College Park, USA. Remote collection of weak distant signals significantly limits LIBS and LIDAR schemes. We demonstrate use of an air waveguide acting as a remote collection lens for increasing the signal-to-noise in such measurements.	

15:30–16:00 Coffee Break, Tucson and Arizona Ballroom Foyer

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
16:00–18:00 FW5A • General Optical Design, Fabrication, Testing, and Instrumentation I Presider: Jannick Rolland; Univ. of Rochester, USA	16:00–18:00 FW5B • Hybrid Integrated Photonics Presider: Wataru Nakagawa; Montana State Univ., USA	16:00–18:00 FW5C • Quantum Electronics II Presider: Raj Patel; Griffith Univ., Australia	16:00–18:15 FW5D • Enabling Technologies for Astrophotonics Presider: Morten Ibsen; Univ. of Southampton, UK	16:00–18:00 FW5E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods II Presider: Laszlo Veisz; Max-Planck- Institut fur Quantenoptik, Germany
FW5A.1 • 16:00 Invited D Design of Optical Imaging Systems Using Freeform Surfaces, James H. Burge ¹ ; ¹ Univ. of Arizona, USA. Conventional design of imaging systems applies rules for low order aberration correction followed by numerical optimization. A different approach is shown that develops freeform surfaces directly to satisfy fundamental relations that underlie image formation.	FW5B.1 • 16:00 Invited O Nanomembrane Integrated Silicon Photonics and Flexible Optoelectronics, Weidong Zhou', Zhenqiang (Jack) Ma ² ; ¹ Electrical Engineering, Univ. of Texas at Arlington, USA; ² Electrical and Computer Engineering, Univ. of Wisconsin, USA. We review surface-normal Fano resonance photonic crystal (rzystalline nanomembrane photonic devices for integrated silicon photon- ics, including membrane lasers on Si, critically coupling, and high Q filters. Nanomembrane enabled flexbile RF electronics/optoelectronics will also be introduced.	 FW5C.1 • 16:00 Measurements on the reality of the wavefunction, Martin Ringbauer^{2,3}, Benjamin Duffus^{2,3}, Cyril Branciard^{1,4}, Eric Cavalcanti⁵, Andrew White^{2,3}, Alessandro Fedrizzi^{2,3}; 'Univ. of Queensland, Australia; 'Centre for Engineered Quantum Systems, Australia; 'Gentre for Quantum Computer and Communication Technology, Australia; ⁴Institut Néel, France; ⁵Univ. of Sydney, Australia; ⁴Institut Néel, Trance; ⁵Univ. of Sydney, Australia; ⁴Institut Néel, Trance; ⁵Univ. of Sydney, Australia: Using a high precision single photon experiment, we rule out maximally Ψ-epistemic models by more than 250 standard deviations. FW5C.2 • 16:15 Laser Based, Single Trapped Ion Optical Atomic Clock with 1 × 10⁶-17 Uncertainty Evaluated using the Time-Dilation Effect, Alan Madej^{1,2}, Pierre Dube¹, Maria Tibbo^{1,2}, John E. Bernard; 'INational Research Council Canada, Canada, ²Physics, Univ. of Ottawa, Canada. An atomic frequency reference using a single trapped ion has been evaluated to 1.2×10⁶-17 uncertainty by exploiting the experimentally observed cancellation of micromotion induced Stark and time dilation shifts on the 88^Sr^+ + 445-THz S-D transition. 	FW5D.1 • 16:00 Invited Diffraction-limited Photonic Micro-Spectro- graphs for Astronomy, Sergio G. Leon-Saval'; ' <i>Univ. of Sydney, Australia</i> . Compact spectro- graphs at high/medium resolution are challeng- ing due to their multimoded nature. Multimode photonics techniques such as photonic lanterns enable compact photonic diffraction-limited spectroscopy in astronomy for the first time, while maintaining collection efficiency.	FW5E.1 • 16:00 Invited O Optimized Photonic Structures for GV/M Laser Acceleration of Electrons, James Rosenz- weig'; 'Univ. of California Los Angeles, USA. We review the electromagnetic design, fabrication and beam dynamics of GV/m dielectric laser ac- celerators. Challenges encountered at ultra-high field and micron scale are discussed, as are ap- plication of these devices to novel light sources.
FW5A.2 • 16:30 Scanning White Light Interferometry for Opti- cal Scanner Calibration using GEM-foil based Traceable Standard, Aneliya Karadzhinova ¹ , Anton Nolvi ² , Timo Hilden ^{1,2} , Rauno Lauhakan- gas ¹ , Edward Haeggström ² , Eija Tuominen ¹ , Ivan Kassamakov ^{1,2} ; ¹ Detector Laboratory, Helsinki Inst. of Physics, Finland, ² Department of Physics, Univ. of Helsinki, Finland. Gas Electron Multiplier (GEM) detectors record particle trajectories in colliders. GEM characterization is important	FW5B.2 • 16:30 Invited High Performance Photonic BiCMOS - A Novel Technology for the Large Bandwidth Era, Dieter Knoll', Lars Zimmermann', Stefan Lischke'; 'IHP, Germany. A novel photonic BiCMOS process is described which allows for dense co-integration of 200GHz bipolar transistors and CMOS devices with waveguides, couplers, modulators and high-speed Ge pho- todiodes. First Proof of Concept demonstrators are presented.	FW5C.3 • 16:30 Relation Between Interband Dipole and Mo- mentum Matrix Elements in Semiconductors, Baijie Gu ¹ , N. Kwong ¹ , Rolf Binder ¹ ; 'Univ. of Arizona, USA. The relation between dipole and momentum matrix elements in crystals, treated with periodic boundary conditions, is revisited. A correction term to standard expressions is found to be large for bulk GaAs, small for THz transitions.	FW5D.2 • 16:30 Tutorial A Green Astro-comb for Earth-like Exoplanet Searches, Chih-Hao Li ¹ , Alexander G. Glenday ¹ , Guoqing Chang ²³ , Li-Jin Chen ⁴ , Gabor Furesz ¹ , Nicholas Langellier ⁵ , Alexander Zibrov ⁵ , Franz Kärtner ²³ , David F. Phillips ¹ , Dimitar Sasselov ¹⁵ , Andrew Szentgyorgy ¹¹ , Ronald L. Walsworth ¹⁵ ; ¹ Harvard-Smithsonian Center for Astrophysics, USA; ² MIT, USA; ³ Univ. of Hamburg, Germany; ⁴ Idesta Quantum Electronics LLC, USA; ⁵ Harvard Univ., USA. Our astro-comb, providing >7000	FW5E.2 • 16:30 Invited Electron Acceleration Experiments by Using a Density-tapered Capillary Plasma Source, Hyyong Suk', Inhyuk Nam', Minseok Kim', Seungwoo Lee', Taehee Lee'; 'Dept. of Physics and Photon Science, GIST, Republic of Korea. We have developed a density-tapered capillary plasma source for high energy electron genera- tion by using the laser wakefield acceleration, where the dephasing problem will be sup- pressed and higher acceleration energies are

86

during manufacturing and final testing. We

established a traceable method to calibrate our

Optical Scanning System employed for quality

control of GEM foils.

lines spaced by 16 GHz from 500-620 nm, has

been deployed at TNG telescope as a wave-

length calibrator for HARPS-N spectrograph.

It provides sub-10 cm/s calibration accuracy

(continued on page 88)

required for exo-Earth searches.

expected. In this presentation, the research

results are introduced.

Tucson Ballroom Salon A

Tucson Ballroom Salon B

FiO

16:00-18:00

FW5F • **Retinal Imaging and Analysis** *Presider: Wolfgang Drexler; Medizinische Universität Wien, Austria*

FW5F.1 • 16:00 Invited

Progress on Cellular Resolution Retinal Imaging: Setting the Stage for Translation Between Clinical and Basic Science, Robert J. Zawadzki'; 'Univ. of California Davis, USA. I will review our progress on developing clinical and animal (mice) cellular resolution in vivo retinal imaging modalities. Example applications of these technologies to in vivo studies of microscopic retinal morphology will be presented. 16:00–18:00 FW5G • Frequency Combs in Novel Spectral Ranges Presider: Ian Coddington; National Inst of Standards & Technology, USA

FW5G.1 • 16:00 Tutorial

Intracavity High Harmonic Generation: Frequency Combs From IR to the XUV, R. Jason Jones¹; ¹Univ. of Arizona, USA. We review the technological development of these sources, their fundamental limitations, and their potential impact on science and technology.

Jason R. Jones is an Associate Professor at the College of Optical Sciences at the University of Arizona. He received his Ph.D. from the University of New Mexico in 2001. He was a National Research Council Postdoctoral Award recipient and senior research associate at JILA (University of Colorado and NIST, Boulder) until July 2006, when he left to join the College of Optical Sciences as an Assistant Professor. His research interests include optical physics, precision spectroscopy and frequency metrology, and ultrafast optics. He has over 80 combined journal and conference publications and two patents. He is the recipient of a National Science Foundation CAREER award (2007), the DARPA Young Faculty Award (2009), as well as a Kavli Fellow of the National Academy of Sciences (Frontiers of Science 2010). He is a member of the American Physical Society and The Optical Society.

FW5F.2 • 16:30 Invited

The Use of Masks and Split-detection in Adaptive Optics Scanning Light Ophthalmoscopy, Yusufu N. Sulai¹; ¹Univ. of Rochester, USA. Confocal adaptive optics scanning light ophthalmoscopes have historically provided high contrast images of the retina at the cellular level. Here, we demonstrate non-confocal detection in imaging retinal structures previously unresolved by confocal imaging. Tucson Ballroom Salon C

16:00-17:30

LS

LW51 • Chemical and Biological Sensing II Presider: King-Chuen Lin; National Taiwan Univ., Taiwan

Tucson Ballroom

Salon D

LW5I.1 • 16:00 Invited

Single-Beam Stimulated Raman Scattering for sub-Microgram Standoff Detection of Explosives, Marcos Dantus¹; ¹Department of Chemistry, Michigan State Univ., USA. A 12fs laser pulse is used to both excite vibrational modes and amplify Raman scattering. Selectivity is accomplished by temporal shaping. Imaging of microcrystals on different substrates from several meters becomes possible.

LW5H.2 • 16:30 Invited

16:00-18:15

Florida, CREOL, USA

LW5H.1 • 16:00 Invited

LW5H • Attosecond Science III

Presider: Zenghu Chang; Univ. of Central

Attosecond Probing of Atomic & Molecular Structure,

Louis F. DiMauro¹; ¹Ohio State Univ., USA. The talk examines

the implication of strong-field scaling in the classical limit as it

pertains to the production of energetic particles, generation

of attosecond pulses and ultrafast molecular imaging. The

results are interpreted using a semi-classical model.

Probing and Controlling Electron Dynamics in Atoms and Molecules with Attosecond Electron Wave Packets, Xinhua Xie'; 'Photonics Inst., Vienna Univ. of Technology, Austria. We experimentally and theoretically investigated the applications of attosecond electron wave packets on probing ultrafast electron dynamics of atoms and controlling electron recollision induced double ionization of atoms and fragmentation of hydrocarbon molecules.

LW5I.2 • 16:30 Invited

Chemical Imaging of Single Nanoparticles by Photothermal Microscopy, Eun-Sohl Koh¹, Bogdan Dragnea¹; ¹Chemistry, Indiana Univ., USA. Photothermal imaging detects absorbing nanoparticles with superior dynamic range which makes it an attractive alternative to single particle fluorescence microscopy. Here we focus on its application to the measurement of adsorption and desorption of macromolecules at a nanoparticle surface.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FW5A • General Optical Design, Fabrication, Testing, and Instrumentation I—Continued	FW5B • Hybrid Integrated Photonics—Continued	FW5C • Quantum Electronics II— Continued	FW5D • Enabling Technologies for Astrophotonics—Continued	FW5E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods II— Continued
FW5A.3 • 16:45 Method and apparatus for detecting the surface shape of reflective freeform optics, Florian Schurig', Mohamed Bichra', Stefan Sinzinger'; 'Fachgebiet Technische Optik, IMN dermany. We present a new method for optical shape measurement of refractive surfaces. The presented concept is based on triangulation and able to measure the surface of complex freeform optics with high inclinations. FW5A.4 • 17:00 Phase Contrast Alignment for All Polymer Optical Interconnect Devices, TAO GE', Jilin Yang', Yuzuru Takashima'; 'College of Optical feasibility of alignment process by using weak phase structure as fiducial marks imaged by a phase contrast microscope in reflection mode. The process enables fabrication of all-polymer furtike aesterol interconnect optica	FW5B.3 • 17:00 A printed nanobeam laser on a SiO2/Si substrate for low-threshold continuous-wave operation, indra karnadi', Jaehyeon Son ² , Ju Young Kim ² , Hoon Jang ¹ , Seungwoo Lee ² , Ki Soo Kim ³ , Bumki Min ² , Yong-Hee Lee ¹ ; ¹ Physics, KAIST, Republic of Korea; ³ Mechanical Engineer- ing, KAIST, Republic of Korea; ³ Convergence and Components& Materials Research Labora- tary. ETB Bonublic of Korea A small factorist	 FW5C.4 • 16:45 Pump-polarization Dependent Polaritonic Skyrmion and Vortex-ring in Spinor Exciton- polariton Condensates, Ting-Wei Chen¹, Wen- Feng Hsieh², Szu-Cheng Cheng¹; 'Department of Optoelectric Physics, Chinese Culture Univ., Taiwan; 'Department of Photonics and Inst. of Electro-Optical Engineering, National Chiao Tung Univ., Taiwan. The numerical spin states of the spinor polariton condensates are calculated with a polarization-tunable pumping beam. The findings suggest the generation and nonde- structive manipulation of polaritonic skyrmion and half-vortex rings in experimentally feasible configurations. FW5C.5 • 17:00 Highly Transmitting Channels for Light in Absorbing Scattering Media, Seng Fatt Liew¹, Sebastien Popoff¹, Allard Mosk², Willem L. Vos², Hui Cao¹; 'Applied Physics, Yale Univ., USA; ²Complex Photonic Systems (COPS), MESA+ Inst. for Nanotechnology, Univ. of Twente, Netherlands. We study numerically the effects of optical absorption on highly transmitting channels in random media. Our results show 	With the second	FW5E.3 • 17:00 Invited Dielectric Laser Acceleration From the Proof-of-concept Experiment with Non-rela- tivistic Electrons to Future Applications, Peter Hommelhofft': 1Friedrich-Alexander-Universitait Erlangen, Germany. Dielectric laser accelera- tion will allow reaching acceleration gradients exceeding 1 GeV/m. We review our proof- of-concept experiment with non-relativistic electrone that chound gradients of 276M//m
flexible optical interconnects cables.	tory, ETRI, Republic of Korea. A small-footprint nanobeam photonic crystal laser made of In- GaAsP material is directly integrated on a SiO2/ Si substrate via transfer-printing process. The transferred nanobeam structure shows single mode lasing near 1550 nm with continuous- wave (CW) operation at room-temperature.	that they are robust against weak absorption, but change to ballistic-like transport in case of strong absorption.		electrons that showed gradients of 25MeV/m, on par with today's RF-accelerators, and will discuss future applications.
FW5A.5 • 17:15 Snapshot full Stokes vector measurement based on spectral interferometry, Daesuk Kim ¹ , Yoonho Seo ¹ , Yonghee Yoon ¹ , Jaejong Lee ² ; ¹ Chonbuk National Univ., Republic of Korea; ² Korea Inst. of Machinery & Materi- als, Republic of Korea. This paper describes a snapshot full Stokes vector measurement method based on spectral interferometry. The proposed method enables us to obtain an ac- curate spectral Stokes vector in msec without using a vibration-free optical table.	HW5B.4 • 17:15 Electric Field Detection Using an Electro-optic Polymer Refilled Silicon Slot Photonic Crystal Waveguide, Xingyu Zhang ¹ , Amir Hosseini ² , Harish Subbaraman ² , Shiyi Wang ³ , Qiwen Zhan ³ , Jingdong Luo ⁴ , Alex Jen ⁴ , Ray T. Chen ¹ ; 'Univ. of Texas at Austin, USA; ² Omega Optics, Inc., USA; ³ Univ. of Dayton, USA; 'Univ. of Washington, USA. We demonstrate an integrated photonic electric field sensor based on an electro-optic polymer refilled silicon slot photonic-crystal waveguide modulator driven by a bowtie- antenna. The minimum detectable electric field is measured to be 2.5V/m at 8.4GHz.	Interacting Dark Resonance Physics with MetaMolecules, Pankaj K. Jha ¹ , Michael Mre- jen ¹ , Jeongmin Kim ¹ , Chihhui Wu ¹ , Xiaobo Yin ¹ , Yuan Wang ¹ , Xiang Zhang ^{1,2} ; <i>1NSF Nano-scale</i> <i>Science and Engineering Center (NSEC)</i> , 3112 Etcheverry Hall,, Univ. of California, Berkeley, USA; ² Materials Science Division, Lawrence Berkeley National Laboratory, USA. We inves- tigate interacting dark resonance type physics with plasmonic metamolecule consisting of a multi-layered radiative atom coupled to cascaded subradiant atoms. In addition to sub- natural spectral response, these metamolecules also exhibits efficient intramolecular excitation transfer.	Photonic Bandgap Fiber Laser for Sodium Guide Star Applications, Akira Shirakawa'; 'Univ. of Electro-Communications, Japan. This talk will discuss photonic bandgap fiber lasers for sodium guide star applications.	

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
I	FiO	L	.S
FW5F • Retinal Imaging and Analysis— Continued	FW5G • Frequency Combs in Novel Spectral Ranges—Continued	LW5H • Attosecond Science III—Continued	LW5I • Chemical and Biological Sensing II—Continued
FW5G.2 • 16:45 Invited Mid-Infrared Frequency Combs for Direct Molecular Spectroscopy, Albert Schliesser ¹ , Nathalie Picqué ²³ , Theodor Hänsch ²⁴ ; ¹ Niels Bohr Inst., Copenhagen Univ., Denmark; ² Max Planck Institut für Quantenoptik, Germany; ³ Institut des Science Moleculaires d'Orsay, France; ⁴ Ludwig-Maximilians- Universität, Germany. New frequency comb sources based on femtosecond lasers, difference frequency generation, optical parametric oscillations and the Kerr effect in micro- resonators bring novel, powerful spectroscopic techniques to			

FW5F.3 • 17:00 Invited

Polarimetric Imaging of the Human Retina for the Quantification of Neural and Blood Vessel Status, Ann E. Elsner¹, Joel A. Papay¹, Stephen A. Burns¹, Jason G. Green¹, Donald T. Miller^{1,}, Barry Cense^{1,2}, Dean A. VanNasadale¹, Matthew Muller^{1,3}, ¹Indiana Uniw, USA; ²Univ. of Utsonimiya, Japan; ³Aeon Imagign, LLC, USA. A Several key structures and molecules in the human retina are known to exhibit birefringence, and therefore can be probed with polarimetric imaging. By using scanned illumination, the contrast is increased, revealing otherwise undetectable pathology.

LW5H.3 • 17:00 Invited

Sub-10 fs DUV Laser Pulses and Their Application to Ultrafast Molecular Spectroscopy and Dynamics, Takayoshi Kobayashi'; 'Univ. of Electro-Communications, Japan. We have developed sub-10fs DUV-pulse laser and applied them to study of the mechanism of ultrafast relaxations in DNA bases. Ultrashort decay from S2 to S1 observed is interpreted in terms of the conical intersections.

LW5I.3 • 17:00 Invited

Time Resolved Frequency Comb Spectroscopy for Studying Gas Phase Free Radical Kinetics, Adam J. Fleisher^{2,3}, Bryce Bjork², Thinh Q. Bui¹, Kevin C. Cossel², Mitchio Okumura¹, Jun Ye²; ¹Arthur Amos Noyes Laboratory of Chemical Physics, California Inst. of Technology, USA; ²JILA, National Inst. of Standards and Technology and Univ. of Colorado, USA; ³Material Measurement Laboratory, National Inst. of Standards and Technology and Univ. of Colorado, USA. We report the development of a novel technique, mid-Infrared Time Resolved Frequency Comb Spectroscopy (TRFCS) for the high sensitivity, broad-band, detection of trace free radicals and reactive intermediates in gas phase, and the study of their reaction kinetics in real-time.

Wednesday, 22 October

FW5G.3 • 17:15 Invited

spectroscopy.

Broadband Comb-resolved Spectroscopy in the Midinfrared, Kevin F. Lee'; '*IMRA America, Inc., USA*. We measure frequency comb line resolved spectra at wavelengths of 3.1 to 5.5 micrometers with a Fourier transform spectrometer. Comb line positions can be scanned to within the 240 kHz comb line accuracy.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FW5A • General Optical Design, Fabrication, Testing, and Instrumentation I—Continued	FW5B • Hybrid Integrated Photonics—Continued	FW5C • Quantum Electronics II— Continued	FW5D • Enabling Technologies for Astrophotonics—Continued	FW5E • Symposium on Laser Particle Acceleration and Novel Acceleration Methods II— Continued
FW5A.6 • 17:30 Invite Evolution of a Linear Systems Formulation of Surface Scatter Theory, James E. Harvey ¹ ; ¹ Photon Engineering LLC, USA. The intuitive Generalized Harvey-Shack (GHS) surface scatter theory has evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation implicit in the Rayleigh-Rice theory and/or the paraxial limita- tion of the Beckmann-Kirchhoff theory.	FW5B.5 • 17:30 Hybrid Electro-Optic Polymer/TiO2 Multilayer Slot Waveguide Modulators for Lower Half Wave Voltage and Electrode Length Product, Yasufumi Enami ¹ , Youssef Jouane ¹ , Dan Zhang ¹ , Yu-Chi Chang ¹ , Jingdong Luo ² , Alex Jen ² ; 'School of System Engieenring, Kochi Univ. of Technology, Japan; ² Department of Materials Science and Engineering, Univ. of Washington, USA. We demonstrate a hybrid electro-optic (EO)/TiO2 multilayer slot waveguide modulator. Half wave voltage (Vpi) is 2.0 V for electrode length (Le) of 1 cm (Vpi Le = 2.0 V cm) at a wave- length of 1550 nm, using low-index guest-host EO polymer SEO125 (in-device r33 = 78 pm/V).	FW5C.7 • 17:30 Complete Evaluation of Optical Nonlineari- ties by the Z-Scan within ARINS, Ricardo R. Correia ¹ ; ¹ Univ Federal do Rio Grande do Sul, Brazil. We present a nonlinear interferometric approach placing a Z-scan setup within a Sagnac interferometer and show that it is self-sufficient for the separation and evaluation of nonlineari- ties based on the Gaussian beam analysis.		FW5E.4 • 17:30 Self-Accelerating Dirac Electrons in Free- Space, Ido Kaminer ^{1,2} , Jonathan Nemirovsky ¹ , Mikael Rechtsman ¹ , Rivka Bekenstein ¹ , Mor- dechai Segev ¹ ; ¹ Physics, Technion Israel Inst. of Technology, Israel; ² Physics, MIT, USA. A recent experiment confirmed the 35-year-old prediction of Airy-shaped electron beams that accelerate in the absence of any potential. Yet many of their intriguing properties remain un- clear, namely: can they reach relativistic speeds?
	FW5B.6 • 17:45 Prediction of Optical Gain in PMMA/ SiO2:Er3+/Yb3+ Nanocomposite, Sajad Ghatrehsamani ¹ , Graham Town ¹ ; 'Macquarie, Australia. We present a numerical study on erbium-ytterbium doped silica nanoparticles in poly-methyl-methacrylate (PMMA), including the effect of scattering at pump and signal wavelengths, and show that gain is possible in the nanocomposite material.	FW5C.8 • 17:45 Modeling "Turbulent" Intensity Dynamics in Multimode Stimulated Brillouin Scattering, Cameron R. Armstrong ¹ , Yu-Cheng Chen ¹ , John A. David ² , John R. Thompson ¹ ; 'Physics and Astronomy, Virginia Military Inst., USA, '2Applied Mathematics, Virginia Military Inst., USA. We present a simple numerical model that is used in conjunction with a systematic algorithm for parameter optimization to understand the three- dimensional stochastic intensity dynamics of stimulated Brillouin scattering in a multimode optical fiber.	FW5D.4 • 17:45 Invited Dispersion Engineering in Silicon Nitride , Mar- tin Roth ¹ , Daniel Bodenmüller ¹ , Jose M. Chavez Boggio ¹ , Rene Eisermann ¹ , Tino Fremberg ¹ , Michael Böhm ² , Lars Zimmermann ³ , Roger Haynes ¹ ; ¹ innoFSPEC, Astrophysikalisches Institut Potsdam (AIP), Germany; ² Physikalische Chemie, Universität Potsdam, Germany; ³ IHP, Germany. As part of ongoing efforts towards development of integrated optoelectronic plat- forms on a single chip, specifically integrated photonic spectrographs for Astronomy, we report numerical and experimental results from dispersion engineering in integrated silicon nitride waveguides.	FW5E.5 • 17:45 Quasi-phase-matched direct laser electron acceleration of variable-length electron bunches in plasma waveguides, Ming-wei Lin ¹ , Igor Jovanovic ¹ , Yao-Li Liu ² , Shih-Hung Chen ² ; ¹ Mechanical and Nuclear Engineering, Pennsyl- vania State Univ., USA; ² Department of Physics, National Central Univ., Taiwan. Effect of the elec- tron bunch length on direct laser acceleration of electrons by radially polarized laser pulses in density-modulated plasma waveguides is investigated using a 3-D particle-in-cell model.
Join the con	iversation			
ON IWI				
	17:00-20:00 (DSA Science Educators' Day, Tucson B	allroom, Salon E	

18:30–19:30 OSA Applications of Visual Science Technical Group Networking Event, Arizona Ballroom, Salon A

Wednesday, 22 October

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D	
Fi	0	LS		
FW5F • Retinal Imaging and Analysis— Continued	FW5G • Frequency Combs in Novel Spectral Ranges—Continued	LW5H • Attosecond Science III—Continued		
FW5F.4 • 17:30 Polarization properties of amyloid beta in an animal model of Alzheimer's disease, Melanie C. Campbell ^{1,2} , Wing Chung Theodore Chow ¹ , Laura Emptage ¹ , Christopher Cookson ¹ , Bill Milgram ^{3,4} , Howard Dobson ^{3,5} ; ¹ Univ. of Waterloo, Canada; ² Guelph Waterloo Physics Inst., Canada; ³ Cangog Technolo- gies, Canada; ⁴ Univ. of Toronto, Canada; ⁵ Univ. of Guelph, Canada. Polarimetry was performed on presumed amyloid beta deposits (thioflavin S positive) in retinas of an animal model of Alzheimer's disease. They showed Mueller matrix properties and polarization contrast similar to deposits in diseased human retinas.		LW5H.4 • 17:30 Attosecond Quantum Beat Spectroscopy, Niranjan Shi- varam ^{1,3} , Henry Timmers ¹ , Xiao-Min Tong ² , Arvinder Sandhu ¹ ; ¹ Physics, Univ. of Arizona, USA; ² Center for Computational Sciences, Univ. of Tsukuba, Japan; ³ Chemical Sciences Divi- sion, Lawrence Berkeley National Laboratory, USA. We investigate electron wavepacket dynamics in Helium using an attosecond pulse train to prepare a superposition of states. The wavepacket is probed by a femtosecond infrared pulse on a 900 femtosecond timescale with attosecond resolution.		
FW5F.5 • 17:45 O Modeling Photoreceptor Mosaic Imaging as Backscattering for Uight from Multilayered Discs, Brian Vohnsen'; 'Uni, College Dublin, Ireland. Imaging of backscattering from bia and multilayered structures representative of the photoreceptor mosaic is simulated for both flood illumination and beam scanning. Results suggest that scattering may better match in-vivo photoreceptor imaging than exclusive waveguiding) FW5G.4 • 17:45 Method to Achieve Targeted Repetition Rates for All- Fiber Mode-Locked Lasers, Lindsay Sonderhouse', Esther Bauman', Laura C. Sinclair', Ian R. Coddington', Nathan R. Newbury'; YINST, USA. We demonstrate a method to achieve any targeted repetition rate for all-fiber frequency-domain reflectometry. This method has applications in microwave generation, dual-comb systems, and future comb-based fieldable electro-optic systems.		LW5H.5 • 17:45 Studying Ultrafast Magnetization Dynamics with Ultrafast Extreme Ultraviolet Light, Emrah Turgut', Patrik Grychtol', Chan La-o-vorakiat', Dmitriy Zusin', Henry C. Kapteyn', Margaret M. Murnane', Justin Shaw ² , Hans Nembach ² , Thomas Silva ² , Ronny Knut ² , Ofer Kfir ³ , Oren Cohen ³ , Avner Fleicher ³ , Dennis Rudolf ¹ , Roman Adam ⁴ , Claus Schneider ⁴ , Stefan Mathias ⁵ , Martin Aeschlimann ⁵ ; 'Physics/JILA, Univ. of Colorado, USA; 'Electromagnetics Division, NIST, USA; ³ Technion Univ., Israel; 'Research Centre Jülich, Germany; ⁵ Univ. of Kaiserslautern, Germany. By using laser-based high harmonic EUV sources, we make several advances in uncover- ing new understanding of correlated charge and spin dynam- ics on few femtosecond timescales, and in developing new element-specific capabilities for probing magnetic materials. LW5H.6 • 18:00 Coherent Attosecond Extreme Ultraviolet Vortices from High-Order Harmonic Generation, Carlos Hernandez; Garcia ^{1,2} , Antonio Picon ³ , Julio San Roman ² , Luis Plaja ² ; 'JILA, Univ. of Colorado, USA; 'Grupo de Investigacion en Optica Extrema, Universidad de Salamanca, Spain; ³ Argonne		
17:00–20:00 OSA Science Educators' Day, Tucson Ballroom, Salon E		National Laboratory, USA. We present a theoretical study of high-order harmonic generation and propagation driven by an infrared field carrying orbital angular momentum (OAM). We show that extreme-ultraviolet high-OAM vortices with helical attosecond pulse structure are generated.		
at Old Tucson, Busses will depart from the S Starr Pass	tarr Circle Entrance at the JW Marriott Tucson s at 18:00.			
18:30–19:30 OSA Applications of Visual Science Technical Group Networking Event, Arizona Ballroom, Salon A				

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
FiO						
	07:30–18:00 Registration, Arizona Ballroom Foyer					
08:00-10:00 FTh1A • General Optical Sciences III O Presider: Byoungho Lee; Seoul National Univ., South Korea	08:00–10:00 FTh1B • Enabling Technologies for High Speed Optical Communications I Presider: Kazi Abedin; OFS Laboratories, USA	08:00-10:00 FTh1C • Optics and Photonics of Disordered Systems I Presider: Alexander Sergienko; Boston Univ., USA	08:00–10:00 FTh1D • Metamaterials Presider: Demetrios Christodoulides; Univ. of Central Florida, USA	08:00–10:00 FTh1E • Lab-on-a-chip and Optofluidics Presider: Pietro Ferraro; Istituto Nazionale di Ottica (CNR), Italy		
FTh1A.1 • 08:00 D Difference frequency generation at 9µm wavelength using a compact all-fiber laser source based on Thulium and Erbium fiber amplifiers, Dmitriy Churin ¹ , Khanh Q. Kieu ¹ , Nasser Peyghambarian ¹ ; ¹ Univ. of Arizona, USA. We demonstrate a mid-infrared frequency comb spanning from 7.5 to 11.6µm using difference frequency generation in a AgGaS ₂ crystal with a compact all-fiber source based on Tm and Er-amplifiers.	FTh1B.1 • 08:00 Invited Manufacturable Ultra-Low Loss Pure-Silica- Core Fiber for Trans-Oceanic Telecommuni- cation, Masaaki Hirano'; 'Sumitomo Electric Industries Ltd, Japan. Applying pure-silica-core technology, loss of 0.15dB/km has become real- ity using manufacturable processes. The Aeff of fibers are appropriately enlarged from viewpoint of analytically developed fiber figure-of-merit, for enabling 100G and beyond trance-oceanic transmission.	FTh1C.1 • 08:00 Invited Resonant and Non-resonant Electromagnetic Fields at the Nanoscale with Active Photonic- plasmonic nanostructures, Luca Dal Negro'; 'Electrical and Computer Engineering, Boston Univ., USA. In this talk, I will present our results on the design and engineering of optical nanostructures and metamaterials for on-chip applications to light sources and nonlinear optical components based on the widespread silicon platform.	FTh1D.1 • 08:00 Tutorial Dealing with Losses in Plasmonics and Meta- materials, Jacob Khurgin'; 'Johns Hopkins Univ., USA. The reasons for high loss that impedes practical applications of Plasmonics and metamaterials will be reviewed and pos- sible means of mitigation of this loss will be considered.	FTh1E.1 • 08:00 Numerical and Analytical Investigation of a SPR Structure as Biosensor, Peyman Jahan- shahi ¹ , Elian Dermosesian ¹ , Faisal Rafiq Mahamd Adikan ¹ , Soo Young ¹ ; 'Department of Electrical Engineering, Univ. of Malaya, Malaysia. Surface plasmon resonance (SPR) technique has recently been utilized for medical diagnosis. Analytical and numerical analysis of a proposed SPR bio- sensor being with the bound analyte-ligand are presented in this study.		
FTh1A.2 • 08:15 D Dual-comb intracavity high harmonic gen- eration, David R. Carlson ¹ , Tsung-Han Wu ¹ , R. Jason Jones ¹ ; ¹ College of Optical Sciences, Univ. of Arizona, USA. A high power fiber-based dual-comb system generates a train of coherent pulse pairs in the VUV with continuously tunable delay based on HHG in a single femtosecond enhancement cavity. An intracavity cross- correlation diagnostic is demonstrated.			Jacob B. Khurgin has been a Professor of Electrical and Computer Engineering at Johns Horpkins University from 1988. Prior to that be	FTh1E.2 • 08:15 Laser Speckle Study of Pulsatile Flow in Presence of Induced Motion Artifact, Mahsa Nemati ¹ , Nandini Bhattacharya ¹ , Paul Urbach ¹ ; ¹ Imaging Physics, Delft Univ. of Technology, Netherlands. Portable devices play an important role in continuous health monitoring. We have performed an experimental study for detec- tion of fluid pulsation based on multi-exposure speckle images, in presence of motion induced artifacts.		
FTh1A.3 • 08:30 Electron Diffraction from a Cold Atom Electron Source, Rory W. Speirs ¹ , Daniel J. Thompson ¹ , Dene Murphy ¹ , Ben M. Sparkes ¹ , Rob E. Scholten ¹ ; ¹ School of Physics, Univ. of Melbourne, Australia. We present single-shot nanosecond and picosecond electron diffraction measurements from gold and graphene using ultracold electrons generated by photoionisa- tion of laser cooled atoms.	FTh1B.2 • 08:30 32 x 32 Port Microsecond Reconfigurable All-Optical Cross Connect, Pierre-Alexandre Blanche ¹ , Brittany Lynn ¹ , Alex Miles ¹ , John Wissinger ¹ , Robert Norwood ¹ , Nasser Pey- ghambarian ¹ ; 'College of Optical Sciences, Univ. of Arizona, USA. We are presenting a new implementation of a 32 x 32 port optical cross connect using diffraction from a Texas Instru- ments Digital Micromirror Device (DMD) as the core switching mechanism.	FTh1C.2 • 08:30 Focusing Inside Random Media, Xiaojun Cheng ^{1,2} , Azriel Z. Genack ^{1,2} ; ¹ Department of Physics, Queens College of the City Univ. of New York, USA; ² Graduate Center, City Univ. of New York, USA. We find that the variation inside a random sample with depth of the contrast in focusing equals the eigenchannel participation number for the field matrix inside a random sample.	was a Senior Member of Research Staff at Philips NV where he worked with various degrees of success on display components,visible lasers pumped by electron beam, and coffeemakers. Prof. Khurgin's main area of expertise is in opti- cal and electronic solid state devices. In his 26 years at JHU Prof. Khurgin had made not so small contributions in the fields of nonlinear optics, semiconductor optoelectronic devices, quantum-cascade lasers, optical communica- tions, THz technology, slow light, plasmonics, opto-mechanics, lase refrigeration, microwave photonics, and fundamental condensed matter	FTh1E.3 • 08:30 Mid-Infrared Opto-nanofluidic Slot-Wave- guide for Label-free On-Chip Chemical Sens- ing, Pao T. Lin ^{1,3} , Sen Kwok ² , Hao-Yu Lin ² , Vivek Singh ¹ , Lionel C. Kimerling ¹ , George White- sides ² , Dawn T. H. Tan ³ , Anuradha M. Agarwal ¹ ; ¹ MIT, USA; ² Harvard Univ., USA; ³ Singapore Univ. of Technology and Design, Singapore. A mid-infrared sensor for label-free on-chip chemical detection was developed using an engineered nanofluidic channel consisting of a Si-liquid-Si slot-structure. A sensitivity with 75		

times improvement was achieved compared to

conventional evanescent-wave sensing.

physics. Prof Khurgin had authored over 280

technical papers, 500 Conference presentations, 5 book chapters, and 15 patents. He is a Fellow of APS and OSA,. Prof. Khurgin holds PhD from Polytechnic University of New York.

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D		
Fi	iO	L	S		
07:30–18:00 Registration, Arizona Ballroom Foyer					
08:00–10:15 FTh1F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers I Presider: Richard Hammond; US Army Research Lab, USA	08:00–10:00 FTh1G • General Optical Design, Fabrication, Testing, and Instrumentation II Presider: John Koshel; College of Optical Sciences/Univ Arizona, USA	08:00–10:00 LTh1H • Resonators and Photonic Crystals IV Presider: Michael Gehl; Univ. of Arizona, USA	08:00–09:45 LTh11 • Quantum States of Matter and Light Presider: Kali Wilson; Univ. of Arizona, USA		
FTh1F.1 • 08:00 Tutorial C Nonlinear Radiation Effects with Filaments - Inside and Outside, Martin Richardson ¹ , Magali Durand, Matthieu Baudelet, Nacholas Barbieri, Michael Chini, Khan Lim; ¹ Laser Plasma Laboratory, Townes Laser Inst., College of Optics and Photonics, Univ. of Central Florida, CREOL, USA; ² Dept. of Electrical Engineering, The Univ. at Buffalo, State Univ. of New York, USA; ³ Micro-Photonics Laboratory - Center for Optical Material Science, Clemson Univ., USA. Renewed interest in the properties and applications of air filaments produced by high intensity ultrafast lasers is being driven by new canabili-	FTh1G.1 • 08:00 Invited Freeform Optics Enables High-performance Augmented Reality Displays, Hong Hua ¹ ; ¹ Univ. of Arizona, USA. Free- form optical technology has becoming more affordable both technically and economically. In this paper, I will present a few examples to demonstrate potentials of freeform optics in designing lightweight and high performance augmented reality displays.	LTh1H.1 • 08:00 Invited Coherent Control of Light-Matter Interactions Using a Quantum Dot in a Cavity, Edo Waks ¹ ; 'Univ. of Maryland at College Park, USA. We utilize a quantum dot coupled to a photonic crystal cavity to implement a qubit-in-a-cavity system that operates in the strong coupling regime. We show that this device can apply quantum logic on a photon.	LTh11.1 • 08:00 Photonic Crystal Waveguides for Neutral-atom Bunching and Acceleration, Igor V. Melnikov ^{1,2} , Joseph W. Haus ³ ; 'Electronic Materials, National Research Univ. of Electronic Technology, Russian Federation; 'Electrical and Computer Engineering, Univ. of Illinois, USA; ³ LADAR and Optical Communications Inst., Univ. of Dayton, USA. We present a comprehensive study of photonic-crystal waveguides suitable for experiments in atomic physics with optically accelearted neutral atoms.		
ties and fresh insight to the complex non-linear phenomena occurring in filaments.			LTh11.2 • 08:15 A THz-bandwidth molecular memory for light, Philip J. Bustard', Duncan G. England', Rune Lausten', Benjamin J. Sussman'; 'National Research Council Canada, Canada. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth memory is used to store 100-fs pulses for durations up to ~1ns. enabling ~10 ⁴ operational time bins.		

Martin Richardson graduated from Imperial College, London, in Physics (1964) and gained his Ph.D in Photon Physics from London University in 1967. In 1980 he joined the University of Rochester where he worked for nine years as group leader for laser fusion experiments. In 1990 he and William Silfvast established the Laser Plasma Laboratory at CREOL at UCF, developing research programs in ultrafast laser development, laser-plasma studies, EUV/X-ray lithography and microscopy and laser materials processing. Professor Richardson has held visiting scientific positions at the Max Born Institute in Berlin, the Institute for Laser Engineering (ILE) Osaka University, the Max Planck Institute for Quantum Optics in Garching, and other institutions in Australia, Canada, France, Qatar and the former Soviet Union. He has published over 400 scientific articles in professional scientific journals. He holds ~ 20 patents, with several pending and has chaired many international conferences including IQEC, ICHSP, and several SPIE meetings. He is a former Associate Editor of JQE, a recipient of the Schardin Medal, and a Fellow of OSA.

FTh1G.2 • 08:30

First-order Radial Nanolayered Polymer GRIN Achromat, Joseph N. Mait¹, Predrag Milojkovic¹, Guy Beadie², Richard A. Flynn²; ¹US Army Research Laboratory, USA; ²US Naval Research Laboratory, USA. We consider the design of a firstorder radial GRIN achromat assuming it is fabricated using nanolayers of a two-polymer blend.

LTh1H.2 • 08:30 Invited

Quantum Emitters in Optical Nanocavities: Physics and Applications, Jelena Vuckovic¹, Thomas Babinec¹, Kevin Fischer¹, Yousif kelaita¹, Konstantinos Lagoudakis¹, Arka Majumdar¹, Kai Mueller¹, Marina Radulaski¹, Armand Rundquist¹, Tomas Sarmiento¹; ¹E.L. Ginzton Laboratory, Stanford Univ., USA. Strong light-matter interaction between InAs/GaAs quantum dots and optical nanoresonators (photonic crystals or nanometallic) is studied, with applications ranging from quantum technologies to optical switches. Alternative platforms such as impurities in SiC are considered.

LTh11.3 • 08:30

Significance of Heralding in Spontaneous Parametric Down-Conversion, Mark Bashkansky', Igor Vurgaftman', John F. Reintjes²; 'Optical Sciences Division, Naval Research Laboratory, USA; 'Sotera Defense Solutions, Inc., USA. We demonstrate both theoretically and experimentally that heralding in spontaneous parametric down-conversion using non-photon-number-resolving detectors can only be used to characterize the signal-idler correlations rather than the nature of the signal-photon state alone.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
	FiO					
FTh1A • General Optical Sciences III—Continued	FTh1B • Enabling Technologies for High Speed Optical Communications I—Continued	FTh1C • Optics and Photonics of Disordered Systems I—Continued	FTh1D • Metamaterials— Continued	FTh1E • Lab-on-a-chip and Optofluidics—Continued		
FTh1A.4 • 08:45 High-Fidelity, Weak-Light Polarization Gate Using Room-Temperature Atomic Vapor, Lu Deng ¹ ; <i>National Inst of Standards & Technol-</i> <i>ogy, USA.</i> Using a polarization-selective-Kerr- phase-shift technique we demonstrate a fast, high-fidelity polarization gate using a room- temperature atomic medium with a record low control light intensity, opening possible applications in advanced telecommunications and information processing.	Fh1B.3 • 08:45 Selective up-conversion of two orthogonal sig- nal modes using shaped pump pulses, Paritosh Manurkar ¹ , Neil V Corzo ¹ , Prem Kumar ¹ , Gregory S. Kanter ¹ , Yu-Ping Huang ¹ ; 'Northwestern Unix, USA. We demonstrate selective up-conversion of two orthogonal signal modes occupying the same time bin using temporally shaped pump pulses. Measured selectivities (8.4 and 4.2 dB) agree with simulation results that take device parameters into account.	FTh1C.3 • 08:45 Discrete Speckle: Localization and Coherence in Anderson-Disordered Lattices, Hasan E. Kondakci ¹ , Ayman F. Abouraddy ¹ , Bahaa E. Saleh ¹ ; ¹ Univ. of Central Florida, CREOL, USA. We show that extended coherent light traveling through photonic lattices with disorder exhibits reduction of the coherence width as disorder increases, and emergence of speckle with grain dimensions proportional to the Anderson localization length.	FTh1D.2 • 08:45 Nonlinear-Optical Studies of Magnetic Dipole Metamaterials, Irina Kolmychek ¹ , Evgeniy A. Mamonov ¹ , Anton Y. Bykov ¹ , Tatiana V. Murzina ¹ , Sergey Kruk ² , Dragomir N. Neshev ² , Martin Weismann ³ , Nicolae C. Panoiu ³ , Yuri S. Kivshar ² ; ¹ Physics, Moscow State Univ., Russian Federation; ² Nonlinear Physics Centre, Austra- lian National Univ., Australia; ³ Electronic and Electrical Engineering, Univ. College London, UK. Second harmonic generation in planar ar- rays of metal-dielectric-metal nanodiscs in the spectral vicinity of magnetic dipole plasmon resonance is experimentally studied. Observed features allow to reveal the mechanism of nonlinear-optical response.	FTh1E.4 • 08:45 C Holographic microscopy in different turbid layer conditions, Vittorio Bianco ¹ , Melania Paturzo ¹ , Andrea Finizio ¹ , Francesco Merola ¹ , Lisa Miccio ¹ , Pasquale Memmolo ^{1,2} , Oriella Gennari ¹ , Paolo A. Netti ² , Pietro Ferraro ¹ ; <i>IINO-</i> <i>CNR</i> , Italy: ² Center for Advanced Biomaterials for Health Care @CRIB, Istituto Italiano di Tecnologia (IIT), Italy. Digital Holography is a reliable technique to overcome the problem of imaging through turbid fluids and scattering lay- ers in microfluidic channels. Amplitude imaging and quantitative phase-contrast cell microscopy through a turbid blood flow is shown.		
FTh1A.5 • 09:00 Light-Wave Mixing and Scattering with Quantum Gases, Lu Deng ¹ , Chengjie Zhu ¹ , Edward W. Hagley ¹ ; 'National Inst of Standards & Technology, USA. We show that optical pro- cesses originating from elementary excitations with dominant collective atomic recoil motion in a quantum gas can profoundly change many nonlinear optical processes routinely observed in a normal gas.	FTh1B.4 • 09:00 Efficient Wavelength Conversion with Less Distortion Using Cross Phase Modulation Induced by Precisely Synthesized Saw-Tooth Pulse, Ken Kashiwagi ¹ ; 'Tokyo Univ of Agricul- ture and Technology, Japan. We realized an efficient and low power penalty wavelength conversion using a saw-tooth pulse precisely generated by an optical pulse synthesizer. The power penalty for 10-Gbps OOK signal was 0.2 dB at 10° BER.	FTh1C.4 • 09:00 Classical Cryptography in Multimode Fibers Using Optical Reciprocity, Yaron Bromberg ¹ , Brandon Redding ¹ , Sebastien Popoff ¹ , Nissim Ofek ¹ , Hui Cao ¹ ; 'Yale Univ., USA. We demon- strate a method for secure optical communica- tion in multimode fibers with classical light. Us- ing strong mode mixing in the fiber, and optical reciprocity, a common random key is distributed between two remote parties.	FTh1D.3 • 09:00 Designing Nanolayered Metamaterials with Hyperbolic Dispersion, Brandon Himmel ¹ , Christopher Curtis ¹ , Lyuba Kuznetsova ¹ ; ¹ San Diego State Univ., USA. The impact on nanolay- ered metamaterials with hyperbolic dispersion due to nonlocal effects is investigated. Calcula- tions for Al:ZnO/ZnO and Al/SiO2 metamaterials show strong spectral dependence of dielectric permittivity in visible/near-IR as the number of layers decreases.	FTh1E.5 • 09:00 Invited 3D Full Morphometric Assessment by Holographic Imaging at Lab-on-Chip Scale for Biomedical Applications, Pietro Ferraro'; 'Istituto Nazionale di Ottica, CNR, Italy. Digital holographic microscopy is a well-established technique to study biological samples in bio- microfluidics. We demonstrate a holographic imaging tool for 3D morphometric character- ization of cells, that can be integrated in Lab on Chip devices.		
FTh1A.6 • 09:15 Abruptly Autofocusing Airy Pulses, Chenchen Wan', Qian Cao', Andy Chong ^{1,2} ; ¹ Electro-Optics Program, Univ. of Dayton, USA; ² Physics, Univ. of Dayton, USA. We generated two counter- accelerating Airy pulses with a spatial light modulator pulse shaper and observed the autofocusing of such pulses in a dispersive medium. The same technique can be used to realize 3D autofocusing waves.	FTh1B.5 • 09:15 Adaptive Photonic Beamforming for Physical Layer Security of Mobile Signals in Optical Fronthaul Networks, John Chang ^{1,2} , Neda Cvijetic ² , Ting Wang ² , Paul Prucnal ¹ , ¹ Princeton Uriv, USA; ² NEC Laboratories America Inc, USA. We experimentally demonstrate adap- tive photonic beamforming for physical layer security of mobile signals over optical fronthaul networks. 33dB signal suppression to eaves- droppers located 0.1m away from intended users is achieved after 8km SSMF transmission.	FTh1C.5 • 09:15 Sparsity-based Recovery of Quantum States From Partial Measurements in a Single Setup, Dikla Oren ¹ , Maor Mutzafi ¹ , Yonina C. Eldar ² , Mordechai Segev ¹ ; ¹ Physics, Technion Israel Inst. of Technology, Israel; ¹ Electrical Engineer- ing, Technion Israel Inst. of Technology, Israel. We show that prior knowledge that a state of several photons can be represented in compact form in an unknown basis enables the recovery of the quantum state from partial measurements in a single setup.	FTh1D.4 • 09:15 Plasmonic Metamaterials Controlling the Momentum of Light, Vincent Ginis ¹ , Philippe Tassin ² , Costas M. Soukoulis ³ , Irina Vereten- nicoff ¹ ; 'Applied Physics Research Group, Vrije Universiteit Brussel, Belgium; ² Department of Applied Physics, Chalmers Univ., Sweden; ³ Department of Physics and Astronomy, Iowa State Univ., USA. We show how plasmonic metamaterials can enhance optical forces between two optical waveguides by several orders of magnitude. The result is based on the observation that plasmonic thin films reduce the optical distance between objects.			

Thursday, 23 October

Tucson Ballroom Salon A Tucson Ballroom Salon B

Tucson Ballroom Salon C

Tucson Ballroom Salon D

58101

FTh1F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers I—Continued

Solid-Density Experiments for Laser-Based Thomson Scattering: Approaching the Radiation Dominated Regime, John A. Nees¹, Alexander Thomas¹, Bixue Hou¹, Anatoly Maksimchuk¹, Victor Yanovsky¹, Karl Krushelnick¹; ¹Unix of Michigan, USA. Solid density materials can support acceleration of electrons to the point where they 'see' existing laser field strengths as being in the radiation-dominated regime. We will discuss tools related to Thomson scattering in this regime.

FTh1G • General Optical Design, Fabrication, Testing, and Instrumentation II—Continued

FTh1G.3 • 08:45

FiO

Optical Design of an Auxiliary Wide Field Line Scan Adaptive Optics SLO, Ting Luo¹, Stephen A. Burns¹; ¹Indiana Univ. Bloomington, USA. We present the optical design for a wide field line scan adaptive optics SLO which provides a 6 degree, 1780x2040 pixel imaging field on human retina and operates in parallel with a fully confocal 2 degree adaptive optics SLO.

LTh1H •	Resonators	and	Photonic
Crystals	IV—Continu	led	

LTh11 • Quantum States of Matter and Light—Continued

LTh11.4 • 08:45

LS

Space-Variant Polarization States of Photons, Enrique J. Galvez¹, Xinru Cheng¹; ¹Physics and Astronomy, Colgate Univ., USA. We prepare heralded single photons in qubitqutrit polarization-spatial nonseparable states and diagnose them in the transverse position basis via imaging polarimetry. Polarization patterns of projected transverse positions reveal C-point polarization singularities.

FTh1G.4 • 09:00

Optomechanical Design with Wide Field of View Fiber-Coupled Image Systems, Adam R. Johnson¹, Jeremy Pessin¹, Igor Stamenov², Ashkan Arianpour², Joseph E. Ford², Ronald A. Stack¹; ¹Distant Focus Corporation, USA; ²Electrical and Computer Engineering, Univ. of California San Diego, USA. Fiber-coupled imaging provides new opportunities for optomechanical system design and layout, and also new challenges when achieving high pixel counts and wide fields of view using multiple sensors in monocentric imaging systems with integrated focus.

LTh1H.3 • 09:00 Invited

Nonlinear Quantum Optics and Precision Measurements in Mesoscopic High-Q Optical Cavities, Zhenda Xie', Shu-Wei Huang', James F. McMillan', Sajan Shrestha', Jinghui Yang', Chee Wei Wong'; 'Columbia Univ., USA. Through advances in nanoscale device physics and precision engineering, here we contribute two frequency comb architectures of impact: firstly, the achievement of ultrashort coherent pulses on-chip and, secondly, quantum correlations in energy-time modelocked two-photon states.

LTh11.5 • 09:00

Quantum Process Estimation with an Unknown Detector, Michal Karpinski¹, Merlin Cooper¹, Brian J. Smith¹; ¹Department of Physics, Univ. of Oxford, UK. We present an operational approach to quantum process estimation, where the detector response is characterized directly by a set of probe states. Numerical simulations are presented for both discrete and continuous-variable quantum optical processes, which demonstrate the utility of this technique.

LTh11.6 • 09:15

Creating spin cat states in Bose-Einstein condensates, hon wai lau¹, Zachary Dutton², Tian Wang¹, Christoph Simon¹; ¹Inst. for Quantum Science and Technology, Univ. of Calgary, Canada; ²Quantum Information Processing Group, Raytheon BBN Technologies, USA. We propose a method to create spin cat states in a two-component Bose-Einstein Condensates. We show that cat size with hundreds of atoms is possible due to the low atom loss, even with experimental imperfection.

FTh1F.3 • 09:15 Invited

High Repetition Rate kJ-class Nanosecond to Femtosecond Lasers, Todd Ditmire^{2,1}; ¹Univ. of Texas at Austin, USA; ²National Energetics, USA. Using novel liquid cooled slab laser amplifier technology we have developed lasers capable of amplifying nanosecond pulses to energy of ~1 kJ at repetition rate up to 0.1 Hz. The design of these amplifiers will be described along with plans to scale this technology to femtosecond, 10 PW lasers.

FTh1G.5 • 09:15

Tunable beam displacer, Luis Jose Salazar Serrano^{1,2}, Alejandra Valencia², Juan P. Torres^{1,3}, ¹ICFO - The Inst. of Photonic Sciences, Spain; ²Quantum Optics Laboratory, Universidad de los Andes, Colombia; ³Dept. of Signal Theory and Communications, Universitat Politecnica de Catalunya, Spain. We report the implementation of a device that spatially separates, a polarized beam, into two parallel beams with orthogonal polarizations and whose separation can be continuously tuned up to a few centimeters.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
	FiO					
FTh1A • General Optical Sciences III—Continued	FTh1B • Enabling Technologies for High Speed Optical Communications I—Continued	FTh1C • Optics and Photonics of Disordered Systems I—Continued	FTh1D • Metamaterials— Continued	FTh1E • Lab-on-a-chip and Optofluidics—Continued		
FTh1A.7 • 09:30 Super-resolution imaging based on ground state depletion on nanodiamonds, Jelle Storteboom ¹ ; ¹ Centre for Micro-Photonics, Swinburne Univ. of Technology, Australia. We report on the super-resolution imaging of single nitrogen vacancy centres based on the ground state depletion method. A resolution of 57.1 nm by 41.2 nm is achieved which holds the potential for ultra-high density optical data storage.	FTh1B.6 • 09:30 Invited C High Spectral Efficiency Submarine Transmis- sion Systems, Dmitri Foursa'; 'TE SubCom, USA. Achieving high capacity in long haul systems requires high spectral efficiency modu- lation formats, large transmission bandwidth. In this presentation we will review recent transoce- anic length transmission demonstrations with an emphasis on increasing capacity.	FTh1C.6 • 09:30 Controlling Diffusion of Light inside a Disor- dered Photonic Waveguide, Raktim Sarma ¹ , Timofey Golubev ² , Alexey Yamilov ² , Hui Cao ¹ ; ¹ Yale Univ., USA; ² Missouri Univ. of Science & Technology, USA. We control diffusion of light inside a disordered waveguide by modifying the waveguide geometry. Our results demonstrate that the localization effects inside a disordered system can be enhanced via geometry without increasing the structural disorder.	FTh1D.5 • 09:30 Great light absorption enhancement in a Graphene metamaterial photodetector, Qin Chen ¹ , Shichao Song ¹ ; ¹ Suzhou Inst. of Nano- Tech and Nano-Bionics, Chinese Academy of Sciences, China. A photodetector with gra- phene embedded in a metamaterial perfect absorber (MPA) is proposed. 17 times light absorption enhancement is obtained compared to a graphene monolayer. Cascaded MPAs integrated with graphene are investigated as multiband photodetectors.	FTh1E.6 • 09:30 Experimental Verification of Multispectral Forward Scatter Phenotyping from Bacte- rial Colonies, Huisung Kim ¹ , lyll-Joon Doh ¹ , Galen B. King ¹ , Arun K. Bhunia ² , Euiwon Bae ¹ ; ¹ Mechanical Engineering, Purdue Univ., USA; ² Food Science, Purdue Univ., USA. We present an experimental verification of multispectral forward scattering from individual bacteria colo- nies. A new instrument was designed to provide broader spectral data from bacterial colonies. Experiments with Staphylococcus colonies show excellent agreement with theories.		
FTh1A.8 • 09:45 Attenuation compensating Airy beams gener- ated by using a digital micro-mirror device, Miguel A. Preciado ¹ , Kishan Dholakia ¹ , Michael Mazilu ¹ ; ¹ School of Physics and Astronomy, Univ. of St Andrews, UK. We present a novel form of the attenuation-compensated propagation- invariant Airy beam. We generate finite-energy		FTh1C.7 • 09:45 Probing Long Range Intensity Correlations in- side Disordered Photonic Waveguides, Raktim Sarma ¹ , Alexey Yamilov ² , Pauf Neupane ² , Boris Shapiro ³ , Hui Cao ¹ , 'Yale Univ., USA; ² Physics, Missouri Univ. of Science & Technology, USA; ³ Technion-Israel Inst. of Technology, Israel. We report direct measurements of long-range spa-	FTh1D.6 • 09:45 Veselago Lens by Photonic Hyper-Crystals, Zun Huang ^{1,2} , Evgenii E. Narimanov ^{1,2} ; ¹ ECE, Purdue Univ., USA; ² Birck Nanotechnology Center, USA. Based on the concept of pho- tonic hyper-crystal an artificial optical me- dium combining the properties of hyperbolic materials and photonic crystals, we develop	FTh1E.7 • 09:45 Real-Time Dynamics of Single Protein-Small Molecule Interactions with Label-Free, Free- Solution Double-Nanohole Optical Trapping, Ahmed Al Balushi ¹ , Reuven Gordon ¹ ; 'Univ. of Victoria, Canada. We use a double-nanohole optical trap to observe single molecule biotin binding on the dynamics of streptavidin and		

10:00–10:30 Coffee Break, Tucson and Arizona Ballroom Foyers

effects inside the random media.

10:30–12:00 FTh2 • FiO Postdeadline Paper Sessions, Arizona Ballroom, Salons 8-9/Arizona Ballroom, Salons 11-12/Tucson Ballroom, Salons A-B

tial intensity correlations and fluctuations inside

quasi-two-dimensional random structures. Long-

range correlations are enhanced by reducing

the waveguide width to strengthen localization

a Veselago lens with nearly constant negative

refractive index and substantially reduced im-

age aberrations.

monovalent streptavidin and to distinguish

single binding events from multiple bindings.

12:00-13:30 Lunch Break (on your own)

13:00–17:00 University of Arizona, College of Optical Sciences and Steward Observatory Mirror Lab Tour,

Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 13:00.

versions of these beams using a digital micro-

mirror device, with similar properties over a finite

distance of propagation.

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
Fi	0	L	S
FTh1F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers I—Continued	FTh1G • General Optical Design, Fabrication, Testing, and Instrumentation II—Continued	LTh1H • Resonators and Photonic Crystals IV—Continued	LTh1I • Quantum States of Matter and Light—Continued
	FTh1G.6 • 09:30 Optimizing broadband attosecond Cr/Sc water window multilayer mirrors, Alexander Guggenmos ^{1,2} , Stefan Radünz ^{1,2} , Roman Rauhut ^{1,2} , Sriram Venkatesan ³ , Angela Wochnik ³ , Christina Scheu ³ , Eric Gullikson ⁴ , Stefan Fischer ^{1,5} , Bert Nickel ^{1,5} , Ferenc Krausz ^{1,2} , Ulf Kleineberg ^{1,2} ; ¹ Ludwig- Maximilians-Universität München, Fakultät für Physik, Ger- many; ² Max-Planck-Institut für Quantenoptik, Germany; ³ Ludwig-Maximilians-Universität München, Department Chemie, Germany; ⁴ Center for X-Ray Optics, Lawrence Berkeley National Lab, USA; ⁵ Center for NanoScience, Ludwig-Maximilians-Universität München, Germany, Low-loss multilayer optics are of uttermost importance for various ex- periments. Here, we report about the realization of atomically smooth interfaces of broadband attosecond Cr/Sc multilayer mirrors by an optimized ion-beam deposition and assisted interface polishing.	LTh1H.4 • 09:30 Optomechanics with a sub-wavelength grating inside a Fabry-Perot cavity, Haitan Xu ^{1,2} , Utku Kemiktarak ^{1,2} , Corey Stambaugh ¹ , Jacob M. Taylor ^{1,2} , John Lawall ¹ ; ¹ National Inst of Standards & Technology, USA; ² Joint Quantum Inst., USA. We place a silicon nitride membrane incorporating a subwavelength grating in the middle of an optical cavity. The high reflectivity of the grating couples the two sub-cavities with a normal mode splitting of 55 MHz.	LTh11.7 • 09:30 Atom Chip-Based Microwave and RF Potentials for Ultra- cold Atoms, Charles Fancher ¹ , Austin Ziltz ¹ , Andrew J. Pyle ¹ , Megan K. Ivory ¹ , Seth A. Aubin ¹ ; ¹ College of William & Mary, USA. We present progress towards using atom chip-based RF and microwaves to trap and spatially manipulate ultracold rubidium and potassium. We also investigate the use of RF evaporation in such traps.
FTh1F.4 • 09:45 Invited C Radiation Reaction and Ultra-high Intensity Lasers, Frederic V. Hartemann'; Sheldon Wu'; 'Lawrence Livermore National Laboratory, USA. Radiation reaction describes the classical self-interaction of charged particles with their radiation field. The theory will be reviewed, as well as interesting pos- sibilities to test the theory in the near future with ultrahigh intensity lasers.	FTh1G.7 • 09:45 Focusing of an ultrashort pulse through a multimode fiber using Digital Phase Conjugation, Edgar Morales ¹ , Salma Farahi ^{1,2} , Ioannis Papadopoulos ² , Demetri Psaltis ² , Christophe Moser ¹ ; ¹ Laboratory of Applied Photonics Devices, School of Engineering, EPFL, Switzerland; ² Laboratory of Optics, School of Engineering, EPFL, Switzerland. We demonstrate a technique to generate an ultrashort focused pulse through a multimode fiber using digital phase conjugation. We com- pensate for spatial and temporal distortions due to modal dispersion by exciting modes of similar propagation constants which are spatially controlled to form a focus.	LTh1H.5 • 09:45 A High-Q and Small-Mode-Volume Cavity in Microfibers, Junlong Kou', Hyuck Choo'; 'Caltech, USA. We propose a novel approach to confine light in a silica microfiber (MF) cavity using a lattice-constant-varying nanohole array.	

10:30–12:00 FTh2 • FiO Postdeadline Paper Sessions, Arizona Ballroom, Salons 8-9/Arizona Ballroom, Salons 11-12/Tucson Ballroom, Salons A-B

12:00–13:30 Lunch Break (on your own)

13:00–17:00 University of Arizona, College of Optical Sciences and Steward Observatory Mirror Lab Tour,

Busses will depart from the Starr Circle Entrance at the JW Marriott Tucson Starr Pass Resort at 13:00.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
13:30–15:30 FTh3A • Coherent Combination of Laser Beams Presider: Igor Jovanovic; Pennsylvania State Univ., USA	13:30–15:30 FTh3B • Enabling Technologies for High Speed Optical Communications II Presider: Roland Ryf; Alcatel- Lucent, USA	13:30–15:30 FTh3C • Optics and Photonics of Disordered Systems II Presider: To be determined	13:30–15:30 FTh3D • Beam Shaping and Enhanced Optical Transmission Plasmonics Presider: To be determined	13:30–15:30 FTh3E • Plasmonics Presider: Jacob Khurgin; Johns Hopkins Univ., USA
FTh3A.1 • 13:30 Tutorial High-energy Waveform Synthesis, Franz Kärt- ner ¹ ; 'Deutsches Elektronen Synchrotron, Ger- many. We will review recent approaches towards high-energy waveform synthesis. It overcomes limitations due to the finite amplifier bandwidth and promises sub-optical-cycle pulses ideal for isolated attosecond pulse generation.	FTh3B.1 • 13:30 Invited Cladding Pumped Erbium-doped Multicore Fiber Amplifiers for Space Division Multiplex- ing, Kazi S. Abedin ¹ , Thierry Taunay ¹ , John Fini ¹ , Lalit Bansal ¹ , V. R. Supradeepa ¹ , Man Yan ¹ , Be- nyuan Zhu ¹ , Eric Monberg ¹ , David DiGiovanni ¹ ; ¹ OFS Laboratories, USA. We report on recent development of multicore fiber amplifiers for applications in space division multiplexed systems. Amplification and noise properties of cladding pumped multicore erbium doped fiber amplifiers employing end- and side-pumping, are presented.	FTh3C.1 • 13:30 Single and collective mode behaviour in random lasers, Cefe Lopez ¹ ; ¹ Consejo Superior de Investigaciones Cientificas, Spain. Random lasers largely elude control because they are based on disordered structures without a usual cavity. A specially engineered pumping can however demonstrate that it is possible to excite single modes and make them interact as well as excite many and reveal their collective behaviour.	FTh3D.1 • 13:30 The Role of Quasi-Cylindrical Waves and Surface Plasmon Polaritons in Beam Shaping with Resonant Nanogratings, Choon How Gan ¹ , Jonathan Pugh ² , Martin Cryan ² , John Rarity ² , Geoffrey Nash ¹ ; 'College of Engineer- ing, Mathematics and Physical Sciences, Univ. of Exeter, UK; ² Department of Electrical and Elec- tronic Engineering, Univ. of Bristol, UK. Quasi- cylindrical waves supported on the surface of a nanograting, like plasmons, can lead to resonant beam shaping. This opens new possibilities in the design and study of dielectric rather than metallic beam shaping nanogratings.	FTh3E.1 • 13:30 Invited Recent Progress in Plasmonic and Metallic Cavity Semiconductor Nanolasers, Cun-Zheng Ning ¹ ; 'Arizona State Univ., USA. We will pres- ent an overview of our efforts in developing the metallic cavity nanolasers, including the demonstration of the first nanolaser with a below-diffraction limit size and the first room temperature subwavelength size nanolasers.
Franz X. Kärtner received his Diploma and Ph.D. degree in Electrical Engineering from Technische Universität München. He heads the Ultrafast Optics and X-rays Division at the Center for Free-Electron Laser Science (CFEL) at DESY, Hamburg, and is Professor of Physics at University of Hamburg, and Adjunct Profes- er of Electrical Engineering at Messachusette		FTh3C.2 • 13:45 Modal makeup of transmission eigenchannels, Zhou Shi ¹ , Azriel Z. Genack ^{1,2} ; ¹ Queens College, City Univ. of New York, USA; ² Graduate Center, City Univ. of New York, USA. The wide range of transmission eigenvalues and correlation frequencies of the transmission eigenchannels is explained in terms of the transmission matrices of the modes of the random medium.	FTh3D.2 • 13:45 Surface resonance switching involved in the Enhanced Optical Transmission in 1D slit array and its applications, Lei Wei ¹ , Paul Ur- bach ¹ , Nandini Bhattacharya ¹ , Pieter de Bokx ² ; ¹ Optics Research Group, Delft Univ. of Technol- ogy, Netherlands; ² Philips Innovation Services, Netherlands: In this work, we investigated the Enhanced Optical Transmission(EOT) phenom- ena in 1D slit array, as a result of this EOT, the switching of surface resonances between layers becomes possible, by simply changing the incident angle. We will discuss the possible ap- plications of the switching ohenomena	
Institute of Technology (MIT). His research interests include few-cycle and ultralow jitter femtosecond lasers, and optical waveform synthesis and its use in attosecond photonics and X-ray free-electron lasers. He is a fellow of the OSA and IEEE.	FTh3B.2 • 14:00 Beyond 1 Pb/s Serial Optical Transport over SMFs based on Orthogonal-Division Multi- plexing (ODM), Ivan B. Djordjevic'; ' <i>ECE, Univ.</i> of Arizona, USA. An orthogonal-division multi- plexing (ODM) scheme is proposed employing Slepian sequences as impulse responses, which are mutually orthogonal regardless of sequence order, while occupying fixed bandwidth. Pro- posed scheme enables beyond 1 Pb/s serial optical transport.	FTh3C.3 • 14:00 Wave localization as position-dependent diffusion: analytical results, Pauf Neupane ¹ , Alexey G. Yamilov ¹ ; <i>Missouri Univ of Science & Technology, USA</i> . We obtain an analytical expression for position-dependent diffusion coefficient which adequately describes wave transport through 1D random medium in local- ized regime.	FTh3D.3 • 14:00 Enhanced Directional Transmission through a Subwavelength Plasmonic Slit by Optical Microcavities, Ali Haddadpour ¹ , Georgios Veronis ¹ ; 'Louisiana State Univ., USA. We show that a compact structure consisting of multiple optical microcavities on both the entrance and exit side of a subwavelength plasmonic slit can lead to greatly enhanced directional transmis- sion through the slit.	FTh3E.2 • 14:00 Invited Quantum Electrodynamics with Plasmonic Waveguides, Francisco J. Garcia-Vidal', Carlos Gonzalez-Ballestero ¹ , Esteban Moreno ¹ ; ¹ Univer- sidad Autonoma de Madrid, Spain. In this talk we will show how one-dimensional plasmonic waveguides could serve as a feasible platform to generate entanglement between two qubits.

Tucson Ballroom Salon A

FTh3F • Symposium on Radiation Reaction

Presider: Martin Richardson; Univ. of Central

in Ultra-High Intensity Lasers II

Tucson Ballroom Salon B

Fabrication, Testing, and Instrumentation III

Bio-inspired, All-optical Acoustic Sensing with Ultra-high

Aspect-ratio, Microsphere-tipped PDMS Micropillars,

Jungwook Paek¹, Jaeyoun Kim¹; ¹Electrical and Computer

Engineering, Iowa State Univ., USA. We present a new

acoustic sensor with all-optical read-out based on ultra-high

aspect ratio, microsphere-tipped PDMS micropillar fabricated

by a new technique incorporating in situ thermal hardening

Presider: John Koshel; College of Optical

Salon

FTh3G • General Optical Design,

Sciences/Univ Arizona, USA

into the direct-drawing technique.

Tucson Ballroom Salon C

Tucson Ballroom Salon D

LS

13:30-15:30

LTh3H • Filamentation III Presider: Jerome Moloney; Univ. of Arizona, USA

LTh3H.1 • 13:30 Invited

Resonant Radiation from Collapsing Light Pulses and Spatiotemporal Light Bullets, Daniele Faccio^{1,6}, Thomas Roger¹, Mihail Petev¹, Matteo Clerici^{1,2}, Roberto Morandotti², Francois Legare², Donatas Majus³, Gintaras Tamosauskas³, Audrius Dubietis³, Arnaud Couairon⁴, Goëry Genty⁵, Paris Panagiotopoulos⁴, Miroslav Kolesik⁴, ¹Heriot-Watt Univ., UK; ²INRS-EMT, Canada; ³Vilnius Univ., Lithuania; ⁴CNRS, Ecole Polytechnique, France; ⁵Tampere Univ., Finland; ⁴Univ. of Arizona, USA. Resonant excitation of dispersive waves from spatiotemporal light bullets exhibits unique features such as orgue statistics. Resonant radiation may also be stimulated on a co-propagating THz pulse, bridging a 6 octave spectral gap.

13:30-15:30

LTh31 • Chemical and Biological Sensing III Presider: King-Chuen Lin; National Taiwan Univ., Taiwan

LTh3I.1 • 13:30 Invited

Optical Cavity-based Detection of Magnetic Field Effects in Condensed Phases, Stuart MacKenzie¹, ¹Chemistry, Univ. of Oxford, UK. We report the development of a range of novel optical cavity-based techniques for the sensitive detection of magnetic field effects in biological reactions proceeding via spin-correlated radical pairs.

Florida, CREOL, USA

13:30-15:45

FTh3F.1 • 13:30 Tutorial

Review of the Ford-O'Connell results on radiation reaction in electrodynamics, Robert O'Connell'; 'Physis, Louisiana State Univ., USA. We review of the Ford-O'Connell results on radiation reaction in electrodynamics and contrast them with the work of others. We conclude that the Ford-O'Connell results are the most complete and exact results.

FTh3G.2 • 13:45

FiO

13:30-15:30

FW3G.1 • 13:30

Whole-field Thickness Measurement of a Leaf Cuticle by Digital holographic tomography (DHT), Raul R. Cordero³, Fernando Labbe¹, Miguel Leon², Amalia Martinez², Juan Rayas^{2,3}, ¹Mechanics, Universidad Técnica Federico Santa María, Chile; ²Centro de Investigaciones en Óptica, Mexico; ³Universidad de Santiago de Chile, Chile. DHF allowed us to retrieve whole field maps of the refraction index of cuticles isolated from the abaxial surface of leaves; these were in turn sampled from an apple tree (Malus domestica).

FTh3G.3 • 14:00

Beam Deflectometry for Measuring Two-Dimensional Refractive Index Profiles in Rectangular Gradient-Index (GRIN) Optical Materials, Di Lin¹, James R. Leger¹; ¹Electrical and Computer Engineering, Univ. of Minnesota, USA. We present a numerical method for calculating two-dimensional index fields from measured boundary values of ray position and slope. Refractive index errors of <1% (RMS) of the total index range (n_max - n_min) are achieved using this approach.

LTh3H.2 • 14:00 Invited

Stimulated Emission from Filaments in Air, Yi Liu¹, Andre Mysyrowicz¹; ¹LOA, ENSTA, France. We report on our recent results concerning stimulated emission from filament plasmas in air. Both forward and backward amplified spontaneous emission is observed. Optical gain arises from population inversion in neutral or ionized nitrogen molecules.

LTh31.2 • 14:00 Invited

Evanescent Wave Cavity Ring-down Spectroscopy in Application to Chemical and Biological Sensing, King-Chuen Lin¹, '*National Taiwan Univ., Taiwan.* Evanescent wave cavity ring-down absorption spectroscopy is applied to investigate thermodynamics, kinetics, orientation of the substrates on the surface, probe critical hemimicelle concentration of surfactants, and examine interaction and binding kinetics of DNA strands.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12
		FiO		
FTh3A • Coherent Combination of Laser Beams—Continued	FTh3B • Enabling Technologies for High Speed Optical Communications II—Continued	FTh3C • Optics and Photonics of Disordered Systems II—Continued	FTh3D • Beam Shaping and Enhanced Optical Transmission Plasmonics—Continued	FTh3E • Plasmonics—Continued
FTh3A.2 • 14:15 Invited Coherent Synthesis of Pulsed Waveforms and Energies Using Fiber-Array Combining and Pulse Stacking Techniques, Almantas Galvanauskas'; 'EECS, Univ. of Michigan, USA. Coherent signal synthesis using spatial and spectral combining of multiple laser beams and time-domain pulse stacking enables overcom- ing fiber amplifier pulse duration and energy limitations and could lead to kHz repetition rate TW-peak power systems.	FTh3B.3 • 14:15 Hybrid optical fiber architecture combining orbital angular momentum of photons and spatial domain multiplexing with wavelength division multiplexing for higher data rates, Syed H. Murshid ¹ , Saud Alanzi ¹ , Rayan Enaya ¹ , Abhijit Chakravarty ² , Gurinder Parhar ² , Gregory Lovell ¹ , Bilas Chowdhury ¹ ; ¹ Electrical and Com- puter Engineering, Florida Inst. of Technology, USA; ² R&D, Emcore Corporation, USA. A hybrid optical fiber communications MIMO architec- ture employing orbital angular momentum of photons, spatial domain multiplexing, and wavelength division multiplexing is presented for higher data capacity systems, owing to two added degrees of photon freedom.	FTh3C.4 • 14:15 Critical States Embedded in the Continuum, Milan Koirala ¹ , Alexey G. Yamilov ¹ , Ali Basiri ² , Yaron Bromberg ³ , Hui Cao ³ , Tsampikos Kottos ² ; ¹ Physics, Missouri Univ of Science & Technology, USA; ² Physics, Wesleyan Univ., USA; ³ Applied Physics, Yale Univ., USA. We introduce a class of critical states which are embedded in the continuum (CSC) of one-dimensional optical waveguide array with one non-Hermitian defect.	FTh3D.4 • 14:15 Transformation and Illusion Optics of Plas- monic and Nonplasmonic Single Slits, Shih-Hui G. Chang ¹ , Yu-Lun Su ¹ ; ¹ National Cheng Kung Univ., Taiwan. The transmission properties of plasmonic and non-plasmonic single slits can be transformed by wavelength stretching. An equivalent focusing lens between a plasmonic slit array and a dimension scaled non-plasmonic slit array is demonstrated.	
	FTh3B.4 • 14:30 Demonstration of a 280 G-bit/s Communica- tions Link Utilizing Plane Wave Multiplexing, Martin P. Lavery ^{1,2} , Hao Huang ² , Yongxiong Ren ² , Guodong Xie ² , Alan Willner ² ; ¹ Engineering, Univ. of Glasgow, UK; ² Univ. of Southern California, USA. We demonstrate a 280 Gbit/s free space communications link utilizing tilted plane wave multiplexing. We measure the system channel crosstalk less then -30 dB and a bit-error-rate is above the FEC limit.	FTh3C.5 • 14:30 Quantum transport of photons in disordered non-Hermitian photonic lattices, Lei Xu ^{1,2} , Yil- ing Dou ^{1,2} , Fang Bo ^{1,2} , Jingjun Xu ^{1,2} , Guoquan Zhang ^{1,2} ; 'School of Physics, Nankai Univ., China; ² TEDA Applied Physics Inst., Nankai Univ., China: We studied quantum correlation and transport of photons in disordered passive parity-time-symmetric lattices, and found that the off-diagonal disorder enhances while the diagonal disorder weakens the loss enhanced transmission effect of photons.	FTh3D.5 • 14:30 Direct Observation of Sub 100nm Focus- ing Using Short Wavelength Plasmons in Homogeneous 2D-Space, Asaf David', Bergin Gjonaj', Yochai Blau', Grisha Spektor', Shimon Dolev', Guy Bartal'; 'Electrical Engineering, Technion Israel Inst. of Technology, Israel. We present direct measurement of short-wave- length plasmons focused into sub-100nm spot in homogeneous 2D space without nanoanten- nas or nanofocusing. The short-wavelength plasmons are achieved in a Ag-SiN-air platform and mapped directly by apertureless near-field microscope.	FTh3E.3 • 14:30 Hyperbolic Tamm Plasmons, Maxim Durach ¹ , David Keene ¹ ; 'Georgia Southern Univ., USA. Prediction of a novel photonic mode at a boundary between a hyperbolic metal-dielectric layer and a distributed Bragg reflector (DBR) is reported. The mode exhibits anisotropic disper- sion and strong coupling of transverse-magnetic and transverse-electric oscillations.
FTh3A.3 • 14:45 Invited Tracing and Controlling Attosecond Dynamics in Condensed Matter, Eleftherios Goulielma- kis'; 'Max-Planck-Institut fur Quantenoptik, Germany. I will show that optical attosecond pulses enable control of electron dynamics in solids, as well as tracing and manipulation of ultrafast, multielectron phenomena in their bulk.	FTh3B.5 • 14:45 Characterization of OAM states affected by turbulence for high-speed short-range links, Jaime A. Anguita ¹ , Horacio P. Rodriguez ¹ , Matias A. Vial ¹ ; 'College of Engineering and Applied Sciences, Universidad de los Andes, Chile. An experimental system is devised to generate, propagate, and detect OAM states over a free- space horizontal 400-m range. We characterize the effects of turbulence on the detection of orbital states and present statistical models for scintillation and crosstalk.	FTh3C.6 • 14:45 Optical Signatures of Disordered Materials for Authentication Applications, Hergen Eilers ¹ , Benjamin Anderson ¹ , Ray Gunawidjaja ¹ ; ¹ Inst. for Shock Physics, Washington State Univ., USA. Authentication is critical in applications such as provenance verification and tamper-indication. Optical signatures of disordered materials can provide unique information suitable for authenti- cation. Several approaches such as transmission, reflection, fluorescence, and random lasing are reviewed.	FTh3D.6 • 14:45 Nanometer-thick Flat Lens with Adjustable Focus, Alain Hache ¹ , Cheikhou Ba ² , Tran Vinh Son ¹ , Real Vallee ² ; ¹ Universite de Moncton, Canada; ² COPL, Universite Laval, Canada. We demonstrate laser beam focusing at 1300 nm with a flat lens with a thickness of less than 100 nm. The lensing exploits large refractive index changes occurring in vanadium dioxide during phase transition.	FTh3E.4 • 14:45 Plasmon-enhanced Four-Wave-Mixing for Super-Resolution Applications, Boris Sim- khovich', Guy Bartal ² ; 'Russell Berrie Nano- technology Inst., Technion - Israel Inst. of Technology, Israel; 'Electrical Engineering, Technion - Israel Inst. of Technology, Israel. We introduce a surface-nonlinear optical method to resolve sub-wavelength features by map- ping of evanescent-wave band at a given frequency into a propagating-wave band at a new frequency generated by Four-Wave-Mixing in thin metallic film.

Thursday, 23 October

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
Fi	0	L	.S
FTh3F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers II—Continued	FTh3G • General Optical Design, Fabrication, Testing, and Instrumentation III—Continued	LTh3H • Filamentation III—Continued	LTh3I • Chemical and Biological Sensing III—Continued
FTh3F.2 • 14:15 Invited The Hidden Geometry of Electromagnetism, Yaron Ha- dad'; 'Univ. of Arizona, USA. We will explore the limitations of known radiation-reaction models and describe a hidden geometric structure in the electromagnetic field lines. The new structure reveals new insights into radiation-reaction, singularities of point charges and high acceleration.	FTh3G.4 • 14:15 Time-of-flight absolute distance measurement by dual- comb second harmonic generation, Hongyuan Zhang ¹ , Xuejian Wu ¹ , Haoyun Wei ¹ , Yan Li ¹ ; ¹ Tsinghua Univ., China. A dual-comb system using type II second harmonic generation is proposed for absolute length measurement. Compared with an interferometer, the maximum residual is 100.6 nm in an acquisition time of 500 ms.		
	FTh3G.5 • 14:30 Real-time Optical Eigenmode Characterisation, Miguel A. Preciado ¹ , Kishan Dholakia ¹ , Michael Mazilu ¹ ; ¹ School of Physics and Astronomy, Univ. of St Andrews, UK. An optical system is characterised by its transmission eigenmodes. Here, we are using a digital micromirror device to detect these opti- cal eigenmodes experimentally and to achieve applications in aberration correction and imaging.	LTh3H.3 • 14:30 Invited Interaction of Filaments with Their Surroundings, Jean- Claude M. Diels ¹ , Ladan Arissian ¹ ; ¹ CHTM, Univ. of New Mexico, USA. The role of bound electrons, molecules and electrons is analyzed in relation to measurements of polarization before and during the filamentation process. Light-electron interaction is shown to be different for linear versus circular polarization.	LTh3I.3 • 14:30 Invited Bioimaging and Quantum Sensing Using Nitrogen- Vacancy Centers in Nanodiamonds, Huan-Cheng Chang ¹ ; ¹ Inst. of Atomic and Molecular Sciences, Academia Sinica, Taiwan. Fluorescent nanodiamonds containing a high-density ensemble of negatively charged nitrogen-vacancy centers are useful as photostable contrast agents for in vitro and in vivo imaging as well as high-sensitivity quantum sensors for nanoscale thermometry.
FTh3F.3 • 14:45 Invited Radiation Reaction of Relativistic Electrons Scattered by Relativistic Intensity Light, Donald P. Umstadterl; 'Physics and Astronomy, Univ. of Nebraska Lincoln, USA. Radiation reaction can be studied by means of Thomson scattering between laser-wakefield-accelerated electrons and laser light focused to ultra-high-intensity.	FTh3G.6 • 14:45 Wavelet Assessment of the Speckle Photo-EMF in an Adaptive Detector for Vibration Measurements, Ángel Salazar ¹ ; 'Universidad Pontificia Bolivariana, Colombia. For different speckle diameters, the first harmonic of the pho- tocurrent is analyzed in terms of the vibration amplitude of the speckle pattern in a vibration sensor based on speckle photo-electromotive force with a photorefractive crystal.	Remin FiO/LS 2014 now availa mobile for	der: Program able in mats!
		www.frontiersi	noptics.com
		for more info	rmation.

Thursday, 23 October

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12		
	FiO					
FTh3A • Coherent Combination of Laser Beams—Continued	FTh3B • Enabling Technologies for High Speed Optical Communications II—Continued	FTh3C • Optics and Photonics of Disordered Systems II—Continued	FTh3D • Beam Shaping and Enhanced Optical Transmission Plasmonics—Continued	FTh3E • Plasmonics—Continued		
	FTh3B.6 • 15:00 Enhancement of channel capacity of OAM- based FSO link by correction of distorted wave-front under strong turbulence, Ming Li ^{1,2} , Yuzuru Takashima', Xiaole Sun', Zhongyuan Yu ² , Milorad Cvijetic'; 'College of Optical Sciences, Univ. of Arizona, USA; ² State Key Laboratory of Information Photonics and Optical Communica- tions, Beijing Univ. of Posts and Telecommunica- tions, China. We studied the channel capacity of OAM-based FSO link employing adaptive optics for correction of a distorted wave-front. The obtained results show that the channel capacity increases significantly even under strong turbulence.	FTh3C.7 • 15:00 Spatial Light Modulator Controlled Random Lasing in Rhodamine 6G Dye-Doped Polyure- thane with Dispersed ZrO2 Nanoparticles, Benjamin Anderson ¹ , Ray Gunawidjaja ¹ , Hergen Eilers ¹ ; 'Inst. for Shock Physics, Washington State Univ., USA. Spatial light modulator controlled resonant feedback random lasing is a promising method for the authentication of tamper evident seals. We report preliminary results of random lasing in Rhodamine 6G dye-doped polyurethane with dispersed ZrO2 nanoparticles.	FTh3D.7 • 15:00 High Selectivity Plasmonic Color Filter Using a Single Dielectric Film Layer, Daniel Mazul- quim ^{1,2} , Kyu J. Lee ¹ , Leone V. Muniz ² , Ben-Hur V. Borges ² , Luiz G. Neto ² , Robert Magnusson ¹ ; ¹ Electrical Engineering, Univ. of Texas at Arling- ton, USA; ² Electrical Engineering, Univ. of São Paulo, Brazil. We design, fabricate, and charac- terize a plasmonic color filter with a transmission bandwidth smaller than 20 nm and an efficiency around 80%. The filter was fabricated using an Al2O3 film by interferometric lithography.	FTh3E.5 • 15:00 Large Area Plasmonic Photoconductive Emit- ters for Generating High Power Broadband Terahertz Radiation, Nezih T. Yardimci ^{1,2} , Shang-Hua Yang ^{1,2} , Christopher W. Berry ² , Mona Jarrahi ^{1,2} ; ¹ Electrical Engineering, Univ. of California - Los Angeles, USA; ² Electrical Engineering and Computer Science, Univ. of Michigan, USA. We present a novel design of large area photoconductive emitters based on plasmonic contact electrodes. A record-high- power radiation of 3.6 mW over 0.1-3 THz frequency range is demonstrated at 150 mW optical pump power.		
FTh3A.4 • 15:15 Digital holography for coherent fiber beam combining with a co-propagative scheme, Marie Antier ¹ , Eric Lallier ¹ , Christian Larat ¹ , Jerome Bourderionnet ¹ , Jerome Primot ² , Arnaud Brignon ¹ ; ¹ Thales Research & technol- ogy, France; ² ONERA, France. We present an original technique for passive coherent fiber beam combining based on digital holography, which is compatible with the use of multi-stages of amplification. This concept is experimen- tally demonstrated and a phase error of <i>N</i> 20 is measured.	FTh3B.7 • 15:15 1-Tbit/s Orbital-Angular-Momentum Multi- plexed FSO Link Through Emulated Turbu- lence With a Data-Carrying Beacon on a Sepa- rate Wavelength for Compensation, Yongs- iong Ren ¹ , Guodong Xie ¹ , Hao Huang ¹ , Long Li ¹ , Nisar Ahmed ¹ , Yan Yan ¹ , Martin Lavery ² , Moshe Tur ³ , Mark Allen Neifeld ⁴ , Samuel Dolinar ⁵ , Miles Padgett ² , Robert W. Boyd ⁶ , Jeffrey Shapiro ⁷ , Alan Willner ¹ ; ¹ Dept. of Electrical Engineering, Univ. of Southern California, USA; ² School of Physics and Astronomy, Univ. of Glasgow, UK; ³ School of Electrical Engineering, Tel Aviv Univ., Israel; ⁴ Dept. of Electrical and Computer Engineering, Univ. of Arizona, USA; ⁵ Jet Propul- sion Laboratory, California Inst. of Technology, USA; ⁶ Dept. of Physics and Astronomy, Univ. of Rochester, USA; ⁷ Research Laboratory of Electronics, MIT, USA. We investigate the influ- ence of wavelength dependence of turbulence on the compensation performance of OAM beams in a beacon-beam-based-compensation scheme. We then implement this scheme and demonstrate a 1-Tbit/s OAM-multiplexed FSO link through emulated turbulence.	FTh3C.8 • 15:15 A High Power, Narrow Linewidth and Wave- length Tunable Semiconductor Laser Using a Photopolymer Bragg Grating as One of the Cavity Mirrors, Yu-Hua Hsieh', Te-Yuan Chung', Long-Chi Du', Shiuan-Huei Lin?; 'Deparment. of Optics and Photonics, National Central Univ., Taiwan; ² Department of Electrophysics, National Chiao Tung Univ., Taiwan. A PQ-PMMA Bragg grating served as one of the cavity mir- rors in an external V-shaped laser cavity using a tapered-amplifier as the gain medium. The laser achieves singe longitudinal mode with the output power exceed 600 mW, and has 30 nm tunable spectral range.	FTh3D.8 • 15:15 Selective Focusing of Laser Pulses by Dif- fraction-Induced Pulse Splitting in Photonic Crystals, Sergey E. Svyakhovskiy ¹ , Anton I. Maydykovskiy ¹ , Viktor O. Kompanets ² , Vladimir A. Bushuev ¹ , Boris I. Mantsyzov ¹ , Sergey V. Chekalin ² , Tatiana V. Murzina ¹ ; ^{IM} . V. Lomonsov Moscow State Univ., Russian Federation; ² Inst. for Spectroscopy RAS, Russian Federation. Linear focusing and defocusing of fentosecond light pulses in one-dimensional photonic crystals was numerically simulated and experimentally observed. The possibility to produce pairs of pulses and to focus or defocus each pulse selectively has shown.	FTh3E.6 • 15:15 Electrical Excitation Pathways for Graphene Plasmons, Kelvin J. Ooi ¹ , Hong Son Chu ² , Wee Shing Koh ² , Chang-Yu Hsieh ¹ , Dawn T. H. Tan ¹ , Lay Kee Ang ¹ ; 'Engineering Product Development, Singapore Univ. of Technology and Design, Singapore; 'Electronics and Pho- tonics Department, Inst. of High Performance Computing, A*STAR, Singapore. We investigate and discuss the viability of graphene plasmons excited through the aloof-scattering of free elec- trons and inelastic electron tunneling. Excitation efficiencies may be potentially larger compared to that for metal plasmons.		
	15:30–16:00	Coffee Break, Tucson and Arizona Ba	llroom Foyers			
			-			

Tucson Ballroom Salon A	Tucson Ballroom Salon B	Tucson Ballroom Salon C	Tucson Ballroom Salon D
Fi	0	L	S
FTh3F • Symposium on Radiation Reaction in Ultra-High Intensity Lasers II—Continued	FTh3G • General Optical Design, Fabrication, Testing, and Instrumentation III—Continued	LTh3H • Filamentation III—Continued	LTh3I • Chemical and Biological Sensing III—Continued
	FTh3G.7 • 15:00 Measurement of Amplitude Response of a Fabry-Perot Tunable Optical Filter for Fourier Domain Mode-Locking, Romita Chaudhuri ¹ , Shanti Bhattacharya ¹ , Balaji Srinivasan ¹ ; ¹ Indian Inst. of Technology, Madras, India. We describe the technique for extracting the amplitude response of a PZT-driven Fabry-Perot filter so as to identify its resonance frequencies, which is essential for high frequency operation of a Fourier Domain Mode-Locked (FDML) laser.	LTh3H.4 • 15:00 Invited Non-perturbative Time-domain Modeling of Light-matter Interactions for Computer Simulation in Extreme Nonlinear Optics, Miroslav Kolesik'; 'Univ. of Arizona, USA. We discuss a new method to calculate nonlinear optical response in strong pulsed fields. This non-perturbative approach utilizes meta-stable, resonance states as a natural tool to treat time- dependent problems accurately and efficiently.	LTh31.4 • 15:00 pH Sensing With Whispering-Gallery Hollow-Bottle Microresonators, Razvan-Ionut Stoian ¹ , Barry K. Lavine ² , Albert T. Rosenberger ¹ ; ¹ Physics, Oklahoma State Univ., USA; ² Chemistry, Oklahoma State Univ., USA. A hollow-bottle microresonator is used to detect changes in the pH of an internal solution. The refractive index of a swellable polymer coating changes with pH, shifting frequencies of modes with internal evanescent fields.
FTh3F.4 • 15:15 Invited Radiation Reaction and the Quantum Langevin Equa- tion, George Ford'; 'Unix. of Michigan, USA. The quantum Langevin equation is described. Its form for the case of an electron coupled to the blackbody radiation field is con- strained by the second law of thermodynamics. This rules out the Abraham-Lorentz equation but allows a modified equation that has no runaway solutions.	FTh3G.8 • 15:15 High NA Pupil Plane Image Polarimetry for Detection of Surface and Subsurface Damage in Optical Materials, Victor E. Densmore ¹ , Youngsik Kim ¹ , Geon-Hee Kim ² , Tom Milster ¹ ; 'College of Optical Sciences, Univ. of Arizona, USA; ² Center for Analytical Instrumentation Development, Korea Basic Science Inst., Republic of Korea. Abstract: A high-NA solid immersion lens microscope in conjunction with polarization modulated pupil plane imaging is investigated as a means for surface and subsurface damage detection in optical materials.		LTh3I.5 • 15:15 Refractometric Sensing with Crystalline MgF2 Whispering Gallery Mode Resonators, Richard Zeltner ^{1,2} , Florian Sedl- meir ^{1,2} , Gerd Leuchs ^{1,2} , Harald G.L. Schwefel ^{1,2} ; 'Max-Planck- Inst Physik des Lichts, Germany; ² Institut of Optics, Informa- tion and Photonics, Univ. Erlangen-Nuremberg, Germany, We report on a refractometric sensor based on crystalline MgF2 Whispering Gallery Mode resonator. High sensitivity, small resonance line widths and good thermal stability provide a limit of detection of 4x10^-6 refractive index units.

15:30–16:00 Coffee Break, Tucson and Arizona Ballroom Foyers

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12			
FiO							
16:00–18:00 FTh4A • General Optical Sciences IV Presider: Laszlo Veisz; Max-Planck- Institut fur Quantenoptik, Germany	16:00–17:45 FTh4B • Enabling Technologies for High Speed Optical Communications III Presider: Dmitri Foursa; TE SubCom, USA	16:15–18:00 FTh4C • Quantum Electronics III Presider: Alexander Sergienko; Boston Univ., USA	16:00–17:15 FTh4D • Imaging, Coherence, and Propagation Presider: P. Scott Carney, Univ. of Illinois at Urbana-Champaign, USA	16:00–18:00 FTh4E • Optical Antennas and Plasmonic Waveguide Devices Presider: Francisco Garcia-Vidal; Universidad Autonoma de Madrid, Spain			
FTh4A.1 • 16:00 Invited Fiber Components, Fiber Amplifiers and Phase Control for Coherent Combination, Hakan S. Sayinc ^{1,2} , Thomas Theeg ^{1,2} , Gabriel Pelegrina-Bonilla ^{1,2} , Katharina Hausmann ^{1,2} , Henrik Tünnermann ^{1,2} , Peter Wessels ^{1,2} , Jörg Neumann ^{1,2} , Dietmar Kracht ^{1,2} ; 'Laser Zentrum Hannover e.V., Germany; 'Centre for Quantum Engineering and Space-Time Research-QUEST, Germany. Fused fiber components, concepts for fiber amplifiers and phase control mechanisms were investigated to be used in coherent beam combining. The investigated photonic devices promise highly integrated and compact laser sources.	FTh4B.1 • 16:00 Invited Wavelength-Selective Switches for Multi- Mode Fiber Systems, Roland Ryf ¹ , Nicolas K. Fontaine ¹ ; ¹ Alcatel-Lucent, USA. Wavelength- selective switches (WSSs) are the key wave- length-routing components in optical meshed networks. We discuss possible architectures for WSS that support multi-mode fibers, and related tread-offs between key switch characteristics like spectral resolution, number of switching ports, and insertion loss. We also present experimental results for WSSs that support few-mode fibers with 3 spatial modes.	FTh4C.1 • 16:00 Withdrawn.	FTh4D.1 • 16:00 Interferometric Measurement of Light Beam's Degree of Polarization, Kimmo Saastamoinen ¹ , Lasse-Petteri Leppänen ¹ , Tero Setälä ¹ , Ari Tapio Friberg ¹ ; ¹ Inst. of Photonics, Univ. of Eastern Fin- land, Finland. We present Young's interferomet- ric measurements of the degree of polarization associated with specifically constructed, partially polarized light beams and compare the results with those obtained with the conventional polar- izer and wave-plate technique.	FTh4E.1 • 16:00 Giant Fluorescence Enhancement of Mol- ecules Coupled to Plasmonic Nanoscale Patch Antennas, Maiken H. Mikkelsen ^{1,2} , Alec Rose ¹ , Thang B. Hoang ^{1,2} , Felicia McGuire ¹ , Jack J. Mock ¹ , Cristian Ciraci ¹ , David R. Smith ¹ ; ¹ Center for Metamaterials and Integrated Plasmon- ics, Department of Electrical and Computer Engineering, Duke Univ., USA; ² Department of Physics, Duke Univ., USA; ² Department of Physics, Duke Univ., USA. We demonstrate a colloidally synthesized and tunable plasmonic platform for giant fluorescence enhancement and increased spontaneous emission rate of embedded fluorophores. A transition between fluorescence enhancement and quenching is re- vealed depending on the plasmonic resonance.			
		FTh4C.2 • 16:15 Compressive Image Reconstruction Opti- mization for Single-Photon Gaussian Beam Profiles, Philip G. Evans ¹ , Raphael Pooser ¹ , Jason C. Schaake ² ; 'Ouantum Information Sci- ence Group, Oak Ridge National Laboratory, USA; ² Dept. of Physics & Astronomy, Univ. of Tennessee, USA. We perform simulated recon- structions of a 2-D Gaussian beam profile using combinations of three common compressive imaging reconstruction algorithms with semi- random sparse sampling matrices. We identify under what conditions the Gaussian profile is faithfully reconstructed.	FTh4D.2 • 16:15 Propagating the carrier frequency of a pulse seamlessly connects spectrometry & coherence, Chandra Roychoudhuri ^{1,2} ; ¹ Phys- ics, Univ. of Connectocut, USA; ² Femto Macro Continuum, USA. A causal model of propagat- ing the carrier frequency of a pulse, instead of non-causal Fourier frequencies, existing in all space, seamlessly connects spectrometry & coherence with deeper physical insights behind the phenomena.	FTh4E.2 • 16:15 Generation of Surface Plasmon Vortex Un- der Linearly-polarized Optical Excitation in a Gold Metasurface, Chen-Ta Ku ¹ , Ching-Fu Chen ¹ , Chen-Bin Huang ¹ ; ¹ Inst. of Photonics Technologies, National Tsing Hua Univ., Taiwan. A nanocavity in a gold thin film is optimized and arranged to form a metasurface. We numerically demonstrate that surface plasmon vortex carry- ing orbital angular momentum can be gener- ated under linearly-polarized optical excitation.			
FTh4A.2 • 16:30 Single-Frame Measurement of the Complete Spatiotemporal Intensity and Phase of a Complex Ultrashort Laser Pulse, Zhe Guang ¹ , Michelle Rhodes ¹ , Rick Trebino ¹ ; ¹ Physics, Geor- gia Inst. of Technology, USA. We demonstrate a simple single-shot device for completely characterizing a single ultrashort pulse in space and time (x,y,t). We measure spatiotemporally complex pulses and display the resulting four- dimensional intensity and phase using intuitive movies.	FTh4B.2 • 16:30 Withdrawn.	FTh4C.3 • 16:30 Enhanced ultraviolet upconversion emission using nanocavities, Ahmed Elhalawany ¹ , Merce- deh Khajavikhan ¹ , William Hayenga ¹ , Sarmad Al- hasan ¹ , Christopher Lantigua ¹ ; ¹ Univ. of Central Florida, USA. We investigate the up-conversion emission spectra of Tm3+ and Yb3+ codoped: β -NaYF4-NaYF4 core-shell nanoparticles em- bedded in plasmonic nanocavities. The results confirm the role of nanocavities in maximizing the conversion efficiency from the NIR to UV.	FTh4D.3 • 16:30 Analysis of Leaky-Wave Microphotonic Struc- tures with a Complex-Wavevector Photonic Band Structure Solver, Jelena Notaros ¹ , Milos Popovic ¹ ; ¹ Department of Electrical, Computer, and Energy Engineering, Univ. of Colorado Boulder, USA. A finite-difference, complex- wavevector photonic band structure solver with perfectly matched layer absorbing boundaries is presented. Modal properties of leaky-wave structures, such as silicon photonic grating cou- plers and waveguide crossing arrays, are shown.	FTh4E.3 • 16:30 Using Particle Swarm Optimization to Design Broadband Optical Nano-antennas for Nonlin- ear Optics, Lilya Lobachinsky ¹ , Alon Bahabad ¹ ; ¹ Tel-Aviv Univ, Israel. Particle swarm optimiza- tion is used to design optical nano-antennas for nonlinear optical interactions in a gas medium adjacent to the nano-antenna. The optimiza- tion is specifically designed to address broad band pumping.			

Tucson Ballroom Salon B

FiO

16:00-18:00

FTh4G • General Optical Design, Fabrication, Testing, and Instrumentation IV Presider: Kevin Rolland-Thompson; Synopsys, Inc, USA

FTh4G.1 • 16:00 Invited

See-through Three-dimensional Screen Using Holographic Optical Elements, Byoungho Lee¹, Jiwoon Yeom¹, Keehoon Hong1; 1Seoul National Univ., Republic of Korea. We introduce lens-array holographic optical elements (LAHOEs) for see-through three-dimensional (3D) screen. The LAHOE performs a function of concave mirror-array for Bragg matching condition, and can provide virtual 3D images overlaid with real world scene.

Tucson Ballroom

LTh4H • Chemical and Biological Sensing IV

Temporally Resolved Laser-Induced Breakdown Spectros-

copy with Mid-IR Femtosecond Pulses, Kyle Hartig¹, Igor

Jovanovic¹; ¹The Pennsylvania State Univ., USA. We report the

first implementation of a laser-induced breakdown spectros-

copy system driven by 2-µm femtosecond pulses. Ab initio

modeling is used to explain the present femtosecond results

and the previously reported nanosecond results.

LS

16:00-18:00

LTh4I • Light-Matter Interaction Presider: Joshua Hendrickson; US Air Force Research Laboratory, USA

Tucson Ballroom

Salon D

LTh4I.1 • 16:00

Efficient Real-time Detection of Terahertz Pulse Radiation by "Listening to" Photoacoustic Generation, Sung-Liang Chen^{1,4}, Cheng Zhang¹, You-Chia Chang², Jong G Ok³, Tao Ling¹, Momchil T. Mihnev², Theodore B. Norris^{1,2}, L. Jay Guo^{1,2}; ¹Department of Electrical Engineering and Computer Science, Univ. of Michigan, USA; ²Department of Applied Physics, Univ. of Michigan, USA; ³Department of Mechanical Engieering, Univ. of Michigan, USA; 4Univ. of Michigan - Shanghai Jiao Tong Univ. Joint Inst., China, We demonstrate real time terahertz detection based on its absorption by carbon nanotubes composite and detection of the generated photoacoustic signal. This method has advantages of real time response, compact size and wide spectrum response.

LTh4H.2 • 16:15

16:00-17:00

LTh4H.1 • 16:00

Integrating Sphere based Photoacoustic Sensor for Trace Gas Detection, Mikael Lassen¹, Anders Brusch¹, David Balslev-Clausen¹, Jan C. Petersen¹; ¹Danish Fundamental Metrology Ltd, Denmark. A photoacoustic detector has been developed for trace gas detection. The detector is based on an integrating sphere absorption cell and laser and LED light sources. Various materials have been investigated for background noise reduction.

LTh4I.2 • 16:15

PT symmetry breaking and transverse mode filtering in microring lasers, Hossein Hodaei1, Mohammad-Ali Miri1, Matthias Heinrich¹, Demetrios N. Christodoulides¹, Mercedeh Khajavikhan¹; ¹Univ. of Central Florida, USA. We show that the concept of parity-time (PT) symmetry breaking can be utilized to suppress higher order transverse modes in microring lasers.

FTh4G.2 • 16:30

Fabrication of Multiplexed Computer Generated Volume Holograms in Photosensitive Glass, Edwin N. Kamau^{1,2}, Vijay V. Parsi Sreenivas², Mike Bülters¹, Claas Falldorf¹, Ralf B. Bergmann^{1,2}; ¹Optical Metrology and Optoelectronic Systems, BIAS - Bremer Institut für angewandte Strahltechnik, Germany; ²Faculty of Physics - Applied Optics, Univ. of Bremen, Germany. We present a new approach for the fabrication of volume holograms in an optical nonlinear material with voxel sizes on the order of 1µm i.e., with increased degrees of freedom and thus improved multiplexing functionality.

LTh4H.3 • 16:30

Femtosecond pulse train shaping for accurate two-photon excited fluorescence measurements, Jong Kang Park¹, Martin C. Fischer¹, Kimihiro Susumu^{2,3}, Michael J. Therien¹, Warren S. Warren^{1,4}; ¹Chemistry, Duke Univ., USA; ²Optical Sciences Division, U.S. Naval Research Laboratory, USA; ³Sotera Defense Solutions, USA; ⁴Radiology, Physics, and Biomedical Engineering, Duke Univ., USA. We report a simple measurement method that exploits pulse train shaping to suppress linear contributions to the fluorescence, and allows for extraction of the two-photon absorption cross sections.

LTh4I.3 • 16:30

Active control of emission frequency and directionality of semiconductor microdisk lasers, Seng Fatt Liew¹, Brandon Redding¹, Li Ge^{2,3}, Glenn S. Solomon⁴, Hui Cao¹; ¹Applied Physics, Yale Univ., USA; ²Engineering Science and Physics, College of Staten Island, CUNY, USA; ³The Graduate Center, CUNY, USA; ⁴Joint Quantum Inst., NIST and Univ. of Maryland, USA. We demonstrate lasing mode selection in semiconductor microcavities via adaptive optical pumping. Slight deformation of cavity shape and boundary roughness lead to distinct emission patterns for individual lasing modes, enabling the switching of output directionality.

Salon C

Presider: To be determined

	F:0							
	FiO							
B • Enabling Technologies ligh Speed Optical munications III—Continued	FTh4C • Quantum Electronics III— Continued	FTh4D • Imaging, Coherence, and Propagation—Continued	FTh4E • Optical Antennas and Plasmonic Waveguide Devices— Continued					
3.3 • 16:45 ptical Bifocal Lens Array Architecture emultiplexing Spatial Domain/Space on Multiplexed Optical Channels, Syed rshid', Bilas Chowdhury', Gregory Lovell'; <i>rical and Computer Engineering, Florida</i> <i>if Technology, USA</i> . Architecture and CAD is of an array of lenses, which simulates I domain/space division multiplexed opti- annels and then spatially demultiplexes dependent optical channels to the cor- nding fibers or detectors, is presented.	FTh4C.4 • 16:45 Enhancing the Conversion Efficiency of Second Harmonic Generation Using Coun- terpropagating Light, Rachel Myer ¹ , Allison Penfield ¹ , Etienne Gagnon ¹ , Amy L. Lytle ¹ ; ¹ Franklin & Marshall College, USA. We have ob- served modulation of the conversion efficiency of second harmonic generation by 1-2% of the spectral intensity using a single counterpropa- gating pulse to locally disrupt the phase of the nonlinear polarization wave.	FTh4D.4 • 16:45 Group velocity dispersion of CdSSe/ZnS core/shell colloidal quantum dots, Amelia V. Spivey'; 'Physics, Univ. of Puget Sound, USA. We measure the group velocity dispersion (GVD) coefficient of two different sizes of com- mercially available CdSSe/ZnS semiconductor core/shell colloidal quantum dots in the ~700- 900 nm range using white light Michelson interferometry.	FTh4E.4 • 16:45 Enhanced plasmon resonance and light absorption in diabolo metal bar optical an- tennas, Junpeng Guo ¹ , Hong Guo ¹ , Zeyu Pan ¹ , Blake S. Simpkins ² , Joshua D. Caldwell ² ; ¹ Univ. of Alabama in Huntsville, USA; ² Naval Research Laboratory, USA. Enhanced plasmon optical resonance and light absorption in diabolo metal bar optical antennas are investigated with numerical simulations and experiment.					
8.4 • 17:00 second Liquid Crystalline Technologies igh Speed Optical Communications: o-optic Switching Through Nanosecond ic Modification of Order Parameter, ymyr Borshch ¹ , Bing-xiang Li ^{1,2} , Sergij V. novskii ¹ , Oleg D. Lavrentovich ¹ ; ¹ Liquid II Inst. and Chemical Physics Interdisciplin- ogram, Kent State Univ., USA; ² College of onic and Information Engineering, Nanjing of Aeronautics and Astronautics, China. kperimentally demonstrate nanosecond ic modification of the order parameter OP). Nanosecond electro-optic switching ially fast for both filed-on and field-off g what allows using liquid crystals for high l optical communication devices.	FTh4C.5 • 17:00 Pulse Formation via Parametric Seeding in Whispering-Gallery-Mode Microresonators with Kerr Nonlinearity, Hossein Taheri ¹ , Ali A. Eftekhar ¹ , Ali Adibi ¹ ; 'Georgia Inst. of Technol- ogy, USA. We numerically study parametric seeding via pump phase modulation in whis- pering-gallery-mode microresonators based on a variant of the Lugiato-Lefever equation. Our results suggest a method for deterministic pulse formation at practical modulation depths.	FTh4D.5 • 17:00 Enhancement and Extinction in Surface- Enhanced Stimulated Raman Spectroscopy, Xiong Kai Benjamin Chng ¹ , Thomas van Dijk ¹ , Rohit Bhargava ¹ , P. Scott Carney ¹ ; 'Univ. of Il- linois at Urbana-Champaign, USA. We present an analysis of surface-enhanced stimulated Raman spectroscopy (SESRS) as an extension to surface-enhanced Raman spectroscopy (SERS). Due to the four-wave mixing process, the ef- fects of enhancement and extinction are more profound in SESRS.	FTh4E.5 • 17:00 Ultra-Compact Integrated Nanoplasmonic Air-Gap Coupler, Rami A. Wahsheh', Zhaolin Lu ² , Mustafa Abushagur ² ; 'Communications Engineering Department, Princess Sumaya Univ. for Technolog, Jordan; ² Microsystems En- gineering, Rochester Inst. of Technology, USA. We present novel design and fabrication steps of an ultra-compact air-gap coupler based on plasmonic waveguides. The theoretical result at 1550 nm is about 70%. The proposed coupler operates at broad frequency range.					
3.5 • 17:15 metric inversion of Airy pulses induced e interaction between the initial chirp he group-velocity dispersion in a single fiber, Lucien Mandeng Mandeng ¹ , Clé- Tchawoua ¹ ; 'Universite de Yaounde I, roon. We present the inversion of the time in asymmetric profile of the Airy pulses ad by the interplay between the group- ty dispersion (GVD) and the initial chirp assical nonlinear single mode fiber (SMF).	FTh4C.6 • 17:15 The General Solution of Cooperative Emis- sion in Arbitrary Dimension, Tyler Hill ¹ , Barry Sanders ² , Hui Deng ¹ ; 'Physics, Univ. of Michigan, USA; ² Inst. for Quantum Science and Technology, Univ. of Calgary, Canada. We study fluorescence of emitters coupled to radiation fields allowing for arbitrary interatomic spac- ing, dipole orientations, and spatial dimension, including the first study of two dimensions. The asymptotic analysis shows coherence increases with reduced dimension.		FTh4E.6 • 17:15 Polarization management in plasmonic wave- guide devices, Qin Chen ¹ , Lin Jin ¹ ; 'Suzhou Inst. of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China. Polarization man- agement is important for photonic integrated circuit and polarization division multiplexing. We present polarization insensitive sub-wavelength hybrid plasmonic waveguides and compact mode-coupling plasmonic polarization rotator on silicon-on-insulator platform.					
Hit 3 Peor not site of a site of your poor vice a given a not site of a	B • Enabling Technologies igh Speed Optical munications III—Continued .3 • 16:45 trial Bifocal Lens Array Architecture emultiplexing Spatial Domain/Space in Multiplexed Optical Channels, Syed shid', Bilas Chowdhury', Gregory Lovell'; ical and Computer Engineering, Florida Technology, USA. Architecture and CAD s of an array of lenses, which simulates domain/space division multiplexed opti- innels and then spatially demultiplexes dependent optical channels to the cor- ding fibers or detectors, is presented. .4 • 17:00 econd Liquid Crystalline Technologies gh Speed Optical Communications: optic Switching Through Nanosecond c Modification of Order Parameter, myr Borshch', Bing-xiang Li ^{1,2} , Sergij V. ovskii', Oleg D. Lavrentovich'; 'Liquid Inst. and Chemical Physics Interdisciplin- gram, Kent State Univ, USA; 'Zollege of nic and Information Engineering, Nanjing of Aeronautics and Astronautics, China. perimentally demonstrate nanosecond condification of the order parameter DP. Nanosecond electro-optic switching ally fast for both filed-on and field-off what allows using liquid crystals for high optical communication devices. .5.5.17:15 hetric inversion of Airy pulses induced interaction between the initial chirp e group-velocity dispersion in a single fiber, Lucien Mandeng Mandeng', Clé- fichawoua'; 'Universite de Yaounde I, oon. We present the inversion of the time n asymmetric profile of the Airy pulses d by the interplay between the group- y dispersion (GVD) and the initial chirp ssical nonlinear single mode fiber (SMF).	 B. Enabling Technologies in the state of th	 B. Spabling Technologing Markov (Space (Space					

Thursday, 23 October

FiO

FTh4G • General Optical Design, Fabrication, Testing, and Instrumentation IV—Continued

FTh4G.3 • 16:45

Shape Adaptive Grinding of Optical Surfaces for Scientific Applications and Consumer Products, Anthony Beaucamp¹, Yoshiharu Namba¹, Phillip Charlton², Arthur Graziano², ¹Chubu Univ., Japan; ²Zeeko LTD, UK. Shape Adaptive Grinding (SAG) is a new process capable of producing optical mirror quality surfaces (Ra <0.5nm) on CVD silicon carbide coatings. The methodology and capability of the SAG process are presented in this paper.

FTh4G.4 • 17:00

Machining High Aspect Ratio Features with Single Femtosecond Laser Pulses, Brian K. Canfield', Trevor Bowman', Lino Costa', Deepak Rajput', Alexander Terekhov', William H. Hofmeister', Lloyd M. Davis'; 'Univ. of Tennessee Space Inst., USA. Exceptionally deep submicron-diameter holes and long microchannels are machined in fused silica by single femtosecond pulses using spherical, cylindrical, and aspheric lenses. These features result from a combination of longitudinal spherical aberration and filamentation.

FTh4G.5 • 17:15

Saturation of Multiplexed Volume Bragg Grating Recording, Sergiy Kaim', Sergiy Mokhov¹, Daniel Ott', Ivan Divliansky¹, Julien Lumeau², Vadim Smirnov³, Boris Y. Zeldovich¹, Leonid Glebov¹; 'Univ. of Central Florida, CREOL, USA; ²Institut Fresnel, France; ³OptiGrate Corp, USA. Recording of VBG in Photo-Thermo-Refractive glass is limited to maximum refractive index change about 0.002. We discuss various shapes of saturation curves and their influence on amplitudes of recorded basic and cross-modulation gratings.

Tucson Ballroom Salon C

LTh4H • Chemical and Biological Sensing IV—Continued

LTh4H.4 • 16:45

Novel architectures for plasmon-enhanced vibrational spectroscopy and biomolecular sensing, Cristiano D'Andrea¹, Barbara Fazio¹, Joerg Bochterle², Maximilien Cottat³, Andrea Toma⁴, Antonino Foti¹, Elena Messina¹, Onofrio M. Marago¹¹, Enzo Di Fabrizio⁵, Marc Lamy de La Chapelle³, Annemarie Pucci², Pietro G. Gucciardi¹; ¹CNR - IPCF Messina, Italy; ²KIP, Heidelberg Univ., Germany; ³Laboratoire CSPBAT, Université Parls 13, France; ⁴Nanostructures, Istituto Italiano di Tecnologia, Italy; ⁵KAUST, Saudi Arabia. Here we illustrate recent progress in nano- bio- sensors technology includes the development of multifunctional devices capable integrate Raman and IR on the same chip, work in liquid environment and feature high molecular specificity

Tucson Ballroom Salon D

LTh41 • Light-Matter Interaction— Continued

LTh4I.4 • 16:45

LS

Measurement of Laser Scattering from Large Free-Electron Wavepackets, Michael Ware¹, Justin B. Peatross'; 'Brigham Young Univ., USA. We report results from an experimental measurement of laser scattering from free large free-electron wavepackets created through ionization of helium. This measurement confirms earlier theoretical predictions.

LTh4I.5 • 17:00

Hyper Rayleigh Scattering from Helium: Search for Even Laser Harmonics, Justin B. Peatross¹, Michael J. Ware¹; ¹Brigham Young Univ., USA. We report on experiments characterizing hyper Rayleigh scattering from high-pressure helium. While odd harmonic scattering of intense laser light is expected, observation of even harmonics would support the Bohmian interpretation of quantum mechanics.

LTh4I.6 • 17:15

Determination of the Graphite Incubation Parameter in the Ultrafast Regime using the D-Scan Technique, Ricardo E. Samad¹, Francisco C. Maia², Narcizo M. Souza², Wagner de Rossi¹, Nilson D. Vieira¹, ¹Centro de Lasers e Aplicações, IPEN-CNEN/SP, Brazil, ²Laboratório Nacional de Luz Sincrotron - LNLS, Brazil, Graphite ablation threshold for ultrashort pulses was measured for pulses superpositions spanning 4 orders of magnitude using the D-Scan technique. Three ablation regimes were identified, and for incubation effects, graphite accumulates defects as a metal.

Arizona Ballroom Salon 8	Arizona Ballroom Salon 9	Arizona Ballroom Salon 10	Arizona Ballroom Salon 11	Arizona Ballroom Salon 12			
FiO							
FTh4A • General Optical Sciences IV—Continued	FTh4B • Enabling Technologies for High Speed Optical Communications III—Continued	FTh4C • Quantum Electronics III— Continued		FTh4E • Optical Antennas and Plasmonic Waveguide Devices— Continued			
FTh4A.6 • 17:30 Multiband optical perfect absorber based on plasmonic double gratings, Fengyun Zhao ¹ , Chuanhong Liu ¹ , Zhaoyu Zhang ¹ , ¹ Peking Univ., China. An optical perfect absorber based on double gratings is proposed. The excitation of LSPR and the coupling of SPPs and LSPR result in three distinctive absorption peaks, with absorbance all more than 97%.	FTh4B.6 • 17:30 Experimental Analysis of Multiplexing/demul- tiplexing Laguerre Gaussian Beams with Dif- ferent Radial Index, Guodong Xie ¹ , Yongxiong Ren ¹ , Hao Huang ¹ , Nisar Ahmed ¹ , Long Li ¹ , Yan Yan ¹ , Martin Lavery ^{1,2} , Miles Padgett ² , Alan Will- ner ¹ ; ¹ Department of Electrical Engineering, U. of Southern California, USA; ² School of Physics and Astronomy, Univ. of Glasgow, UK. Different orders of Laguerre-Gaussian (LG) beam could form two-dimensional orthogonal basis set for laser beams in free space. The orthogonality of LG beams with the same phase change in azimuthal direction but different in radial direc- tion is experimentally studied.	FTh4C.7 • 17:30 Determination of Nonlinear Optical Coef- ficients from Micropowders in the Presence of Scattering: A revision of the Kurtz-Perry Method, Ibon Aramburu ¹ , Josu Ortega ² , Cesar Folcia ³ , Jesus Etxebarria ³ ; ¹ Applied Physics I, Faculty of Engineering (ETSI), Univ. of the Basque Country, UPV/EHU, Spain; ² Applied Physics II, Univ. of the Basque Country, UPV/ EHU, Spain; ³ Condensed Matter Physics, Univ. of the Basque Country, UPV/EHU, Spain. The shortcomings of the Kurtz-Perry method are discussed. Several procedures that overcome these limitations are proposed. Experiments demonstrate that those procedures can provide reliable values for the NLO coefficients even in the presence of scattering.		FTh4E.7 • 17:30 Efficient End-fire Coupling of Surface Plas- mons in Metallic Waveguide, Caitlin Fisher ¹ , Lindsay C. Botten ^{2,3} , Christopher G. Poulton ³ , Ross C. McPhedran ¹ , C. Martijn de Sterke ¹ ; ¹ CUDOS, School of Physics, Univ. of Sydney, Australia; ² CUDOS, National Computational Infrastructure, Australian National Univ., Austra- lia; ³ CUDOS, School of Mathematical Sciences, Univ. of Technology, Australia. We theoretically investigate the end-fire coupling mechanism of surface plasmons into an interface, bounded by an ideally grounded waveguide, with respect to incident beam parameters, media permittivities and waveguide width. Efficiencies of ~80% were observed.			
FTh4A.7 • 17:45 QED Radiation Pressure On Electrons and Ultra-relativistic "Ghost" Of Relict Radia-		FTh4C.8 • 17:45 Interplay of Optical Feedback and Current Modulation in Multimode VCSELs, Hong					

tion, Alexander E. Kaplan¹, Boris Y. Zeldovich²; ¹ECE, Johns Hopkins Univ., USA; ²CREOL, Univ. of Central Florida, USA. A universal theory of radiation pressure by a relic (cosmic microwave background) radiation, using fully relativistic+quantum approach suggests a possibility of formation of a peak of electron density in cosmic rays directly related to CMB.

Lin¹, Aliza Khurram¹; ¹Bates College, USA. We experimentally investigated polarization dynamics in a current-modulated VCSEL with optical feedback. Feedback features can be enhanced or suppressed by modulation. VCSELs are more sensitive to modulation in multimode regime than in single mode regime.

Presentations selected for recording are designated with a **O**. Access these by visiting www.frontiersinoptics.com and clicking on the View

Presentations

button.
Tucson Ballroom Salon B Tucson Ballroom Salon C

Tucson Ballroom Salon D

FiO

FTh4G • General Optical Design, Fabrication, Testing, and Instrumentation IV—Continued

FTh4G.6 • 17:30

All Optical Three Dimensional Spatio-Temporal Correlator for Video Clip Recognition, Mehjabin Sultana Monjur¹, Selim Shahriar^{1,2}, ¹Department of Electrical Engineering and Computer Science, Northwestern Univ., USA; ²Department of Physics and Astronomy, Northwestern Univ., USA. We describe an all-optical three-dimensional spatio-temporal correlator (STC) which can recognize rapidly a video clip of a small duration contained in a much larger video file in a temporally and spatially shift invariant manner.

Thank you for attending FiO/LS. Look for your post-conference survey via email and let us know your thoughts on the program.

FTh4G.7 • 17:45

Nonlinear Excitation Associated with Direct Laser Writing in SU-8, Stephen M. Kuebler^{1,2,3}, Henry E. Williams¹, Carlos Diaz¹, Gabriel Padilla¹, Florencio E. Hernandez^{1,2}; ¹Chemistry Dept., Univ. of Central Florida, USA; ²CREOL, The College of Optics and Photonics, Univ. of Central Florida, USA; ³Physics Dept., Univ. of Central Florida, USA. Multi-photon direct laser writing (mpDLW) experiments, Z-scan spectroscopy, and quantum chemical calculations indicate that the initiators used in the photo-polymerizable resin SU-8 are capable of three-photon excitation at or near the vacuum wavelength of 800 nm and that this excitation mode affects its performance when the material is used to micro-fabricate three-dimensional structures by mpDLW. These findings can be leveraged to improve its use for fabricating three-dimensional ional micro-structures.

LS

LTh4I • Light-Matter Interaction— Continued

LTh4I.7 • 17:30

Propagation Velocity of Surface Polariton, S. R. Seshadri¹; ¹Member, American Physical Society, USA. A plane interface separating vacuum from free electron gas supports an inhomogenous plane wave known as surface polariton. The energy transport velocity which equals the wave-packet velocity is shown to be not physically meaningful.

LTh4I.8 • 17:45

Fermions Dressed by Massless Vector Bosons, John Gardiner¹, Stephen Erickson¹, Mercedes Wright², Michael J. Ware¹, Scott Glasgow²; ¹Physics, Brigham Young Unix, USA; ²Mathematics, Brigham Young Unix, USA. We use a non-perturbative, space-time resolved, simulation of quantum electrodynamics to explore the properties of electrons dressed with photons. We observe differences in the dynamics of dressed and bare electron wave packets, including differences in dispersion, speed, and mass.

FiO/LS Sessions, Symposia and Invited Speakers by Topic

ех
σ
L
_
せ
Ð
· Ē
_ _ _
S

FiO 1: Optical Design and Instrumentation

Те	chnic	al	Sessions	
			-	-

FM3D, Coherence, Interference, and Polarization I, Monday, 13:30–15:30
FM4D, Coherence, Interference, and Polarization II, Monday, 16:00–18:00
FTu1C, Coherence, Interference, and Polarization III, Tuesday, 08:00–10:00
FTu2C, Wavefront Sensing and Adaptive Optics, Tuesday, 10:30–12:15 page 52
FTu4C, Coherence, Interference, and Polarization IV, Tuesday, 13:30–15:30 page 58
EW1A Three-Dimensional Ontical Structure Design Eabrication and
Nanopatterning I, Wednesday, 08:00–10:00
FW2A, Imaging, Wednesday, 10:30–12:00
FW4A, Three-Dimensional Optical Structure Design, Fabrication and
Nanopatterning II, Wednesday, 13:30–15:30 page 80
FW4G, Microscopy and OCT II, Wednesday, 13:30–15:30 page 81
FW5A, General Optical Design, Fabrication, Testing, and Instrumentation I, Wednesday, 16:00–18:00
FTh1G, General Optical Design, Fabrication, Testing, and Instrumentation II, Thursday, 08:00–10:00
FTh3G, General Optical Design, Fabrication, Testing, and Instrumentation III, Thursday, 13:30–15:30
FTh4G, General Optical Design, Fabrication, Testing, and Instrumentation IV, Thursday, 16:00–18:00
Invited Speakers FM3D.1, Polarization Controlled Surface Plasmon Polariton Propagation:

FTu2C.5, Beaconless Tomographic Wave-Front Sensing, Michael Hart, Univ. of Arizona, USA, Tuesday, 11:45–12:15
FTu4C.1, Demonstration of an Optical Nano Beacon for Controlled Directional Emission and Coupling, Gerd Leuchs, Max-Planck Institute for the Science of
Light, Germany, Tuesday, 13:30–14:00 page 58
FW1A.1, Controlling Light using Three-Dimensional Spatially Variant Self-
Collimating Photonic Crystals, Stephen Kuebler, Univ. of Central Florida, USA,
Wednesday, 08:00–08:30 page 68
FW4A.1, Integrated Impedance-matched Photonic Dirac-cone Metamaterials,
Eric Mazur, Harvard Univ., USA, Wednesday, 13:30–14:00 page 80
FW5A.1, Design of Optical Imaging Systems Using Freeform Surfaces, James Burge, <i>Univ. of Arizona, USA</i> , Wednesday, 16:00–16:30
FW5A.6, Evolution of a Linear Systems Formulation of Surface Scatter Theory,
James Harvey, Photon Engineering LLC, USA, Wednesday, 17:30–18:00 page 90
FTh1G.1, Freeform Optics Enables High-performance Augmented Reality Displays,
Hong Hua, Univ. of Arizona, USA, Thursday, 08:00–08:30 page 93
FTh4G.1, See-through Three-dimensional Screen using Holographic Optical
Elements, Byoungho Lee, Seoul National Univ., Korea , Thursday,
16:00–16:30

FiO 2: Optical Sciences

Technical Sessions

FTu1G, General Optical Sciences I, Tuesday, 08:00–10:00 page 47
FTu2G, General Optical Sciences II, Tuesday, 10:30–12:00
FTu4G, Relativistic Light Sources, Tuesday, 13:30–15:15
JTu4E, Novel Intense Attosecond Sources I (Joint with LS),
Tuesday, 13:30–15:30 page 58
JTu5G, Novel Intense Attosecond Sources II (Joint with LS),
Tuesday, 16:00–17:30 page 65
FW5G, Frequency Combs in Novel Spectral Ranges, Wednesday,
16:00–18:00
FTh1A, General Optical Sciences III, Thursday, 08:00–10:00 page 92
FTh3A, Coherent Combination of Laser Beams, Thursday, 13:30–15:30 page 98
FTh4A, General Optical Sciences IV, Thursday, 16:00–18:00 page 104
FTh4D, Imaging, Coherence, and Propagation, Thursday, 16:00–17:15 page 104
FM4F, Novel Methods for Tissue Imaging and Therapy, Monday,
16:00–18:00

Invited Speakers FTu4G.1, Tunable, Quasi-monoenergetic X-rays from Thomson Scattering with Laser-driven Electrons, Stefan Karsch, Max-Planck-Institut fur Quantenoptik, *Germany*, Tuesday, 13:30–14:00 page 59 FTu4G.2, Bright X-ray Pulse Generation by Laser Thomson-Backscattering and Traveling Wave Optical Undulators, Ulrich Schramm, Helmholtz-Zentrum Dresden-Rossendorf, Germany, Tuesday, 14:00–14:30 page 59 FTu4G.3, Extreme Light: Driver for a Table-Top Electron Accelerator and Tunable Narrowband Hard X-Ray Light Source, Donald Umstadter, Univ. of JTu4E.2, Production of intense isolated attosecond pulses for non-linear XUV-XUV pump-probe experiments with 100 eV photons, Boris Bergues, Max-Planck-Institut für Quantenoptik, Germany, Tuesday, 14:15–14:45 page 60 JTu4E.3, High Photon Flux atto-second Sources at the Lund Laser Centre, Anne Harth, Lunds Universitet, Sweden, Tuesday, 14:45–15:15 page 60 JTu5G.1, High gain Frequency domain Optical Parametric Amplification, François Légaré, INRS-Energie Mat & Tele Site Varennes, Canada, Tuesday, JTu5G.2, Generation of High-power Isolated Attosecond Pulses by an Infrared Twocolor Gating, Eiji Takahashi, RIKEN, Japan, Tuesday, 16:30–17:00 page 65 FW5G.2, Mid-Infrared Frequency Combs for Direct Molecular Spectroscopy, Albert Schliesser, Copenhagen Univ., Denmark, Wednesday, 16:45–17:15 page 89 FW5G.3, Broadband Comb-resolved Spectroscopy in the Midinfrared, Kevin Lee, IMRA America, Inc., USA, Wednesday, 17:15–17:45 page 89 FTh3A.2, Coherent Synthesis of Pulsed Waveforms and Energies Using Fiber-Array Combining and Pulse Stacking Techniques, Almantas Galvanauskas, FTh3A.3, Tracing and Controlling Attosecond Dynamics in Condensed Matter, Eleftherios Goulielmakis, Max-Planck-Institut fur Quantenoptik, Germany, FTh4A.1, Fiber Components, Fiber Amplifiers and Phase Control for Coherent Combination, Hakan Sayinc, Laser Zentrum Hannover e.V., Germany, Thursday,

FiO 3: Optics in Biology and Medicine

Technical Sessions

FTu1F, Optical Trapping and Manipulation, Tuesday, 08:00–10:00 page 4
FTu2F, General Optics in Biology and Medicine I, Tuesday, 10:30–12:00 page 53
FTu4F, Fibers for Biomedical Applications , Tuesday, 13:30–15:30 page 54
FTu5F, General Optics in Biology and Medicine II, Tuesday, 16:00–17:30 page 65
FW1E, Microscopy and OCT I, Wednesday, 08:00–10:00 page 64

10:30–11:45
FW4G, Microscopy and OCT II, Wednesday, 13:30–15:30 page 81
FTh1E, Lab-on-a-chip and Optofluidics, Thursday, 08:00–10:00 page 92
Invited Speakers
FM4F.2, Multiscale Optical Imaging for Detection of Oral Cancer, Kristen Maitland, <i>Texas A&M Univ., USA,</i> Monday, 16:15–16:45
FM4F.6, Acoustic Radiation Force Optical Coherence Elastography, Zhongping Chen, <i>Univ. of California Irvine, USA,</i> Monday, 17:30–18:00 page 43
FTu1F.2, Optical Trapping, Stretching, and Self-Assembly for Biological Measurements, Michelle Povinelli, <i>Univ. of Southern California, USA</i> , Tuesday, 08:15–08:45
FTu1F.6, Do Holographic Optical Tweezers Work for Large Swimming Micro-Organisms?, Monika Ritsch-Marte, <i>Innsbruck Medical Univ., Austria,</i> Tuesday, 09:30–10:00
FTu4F.2, Multimodality Fiber-based Endoscopes for Cancer Detection,
Jennifer Barton, Univ. of Arizona, USA, Tuesday, 13:45–14:15 page 59
FTu5F.3, Colloidal Quantum Dots for Photo-sensing and Neuron Stimulation,
Lih Lin, Univ. of Washington, USA, Tuesday, 16:30–17:00
of OCT Signals, Amy Oldenburg, Univ of North Carolina at Chapel Hill, USA, Wednesday, 08:30–09:00
FTh1E.5, 3D Full Morphometric Assessment by Holographic Imaging at Lab-on-Chip Scale for Biomedical Applications., Pietro Ferraro, <i>CNR, Italy,</i> Thursday, 09:00–09:30

Concrete Option in Richard and Medicine III Wednesde

FiO 4: Optics in Information Processing

Technical Sessions

FM3E, Optical System Design for Information Optics, Monday,
13:30–15:30
FM4E, Information Capacity of the Photon, Monday, 16:00–17:45 page 40
FTu5C, Coherence and Polarization I, Tuesday, 16:00–17:30 page 64
FTu5E, Novel Image and Information Analysis Methods, Tuesday,
16:00–17:15
FW2E, Coherence and Polarization II, Wednesday, 10:30–12:00 page 74
Invited Speakers
FM4E.1, Compressive Quantum Sensing, John Howell, Univ. of Rochester, USA,
Monday, 16:00–16:30 page 40
FM4E.2, High Information Capacity Image Recognition Using Correlated Orbital Angular Momentum (OAM) States, Alexander Sergienko, Boston Univ.,

FTu5C.1, Engineering Spatial Coherence of Lasers for Speckle-Free Imaging,
Hui Cao, Yale Univ., USA, Tuesday, 16:00–16:30
FTu5E.1, Label-free Assessment of Mitochondrial Organization in Three-
dimensional Tissues, Irene Georgakoudi, Tufts Univ., USA, Tuesday,
16:00–16:30
FW2E.2, Bio-Inspired Spectral-Polarization Imaging Sensors for Medical
Applications, Viktor Gruev, Washington Univ. in St. Louis, USA, Wednesday,
11:15–11:45 page 76

FiO 5: Fiber Optics and Optical Communications

Technical Sessions

FM3C, Frequency Comb Generation in Optical Fibers and Their Applications, Monday, 13:30–15:30
FM4C, Fiber Frequency Combs and Mode-Locked Lasers, Monday, 16:00–18:00
FTu1B, Optical Interconnections for Data Centers, Tuesday, 08:00–10:00 page 46
FTu2B, Optical Fiber Sensors I, Tuesday, 10:30–12:00
FTu4B, Optical Fiber Sensors II, Tuesday, 13:30–15:30
FTu5B, Optical Fiber Sensors III, Tuesday, 16:00–17:30 page 64
FW1D, Long Wavelength Mid-IR to THz Fiber Devices I, Wednesday, 08:00–10:00
FW2D, Long Wavelength Mid-IR to THz Fiber Devices II, Wednesday, 10:30–11:45
FW4D, Novel Fiber And Communications Devices, Wednesday, 13:30–15:15
FW5D, Enabling Technologies for Astrophotonics, Wednesday, 16:00–18:15
FTh1B, Enabling Technologies for High Speed Optical Communications I,
Thursday, 08:00–10:00
F1h3B, Enabling Technologies for High Speed Optical Communications II, Thursday, 13:30–15:30 page 98
FTh4B, Enabling Technologies for High Speed Optical Communications III, Thursday, 16:00–17:45 page 104
Invited Speakers
FM3C.1 , Noise Inhibited Frequency Generation in Wideband Parametric Mixers, Stojan Radic, Univ. of California San Diego, USA, Monday, 13:30–14:00

Univ. of California San Diego, USA, Monday, 15:00–15:30 page 38
FM3C.6, Frequency Combs in Telecommunications Applications, Nikola Alic,
Stojan Radić, Oniv. of Camornia San Diego, OSA, Monday, 13.30–14.00 page 54

FM4C.1, Mean-field Numerical Modelling of Microresonator Frequency Combs, Miro Erkintalo, Univ. of Auckland, New Zealand, Monday, 16:00–16:30 page 40

FM4C.6, Efficient Broadband Vacuum-Ultraviolet Generation in Gas-Filled
Hollow-Core Photonic Crystal Fibers, John Travers, Max Planck Institute for the
Science of Light, Germany, Monday, 17:30–18:00 page 42
FTu1B.1, Optical Innovations in Data-centers Interconnects and Networking,
Loukas Paraschis, Cisco Systems, Inc., USA, Tuesday, 08:00–08:30 page 46
FTu1B.2, Record Small and Low Loss Slow Light Delay Lines and Dispersion
Compensators, Misha Sumetsky, Aston Univ., UK, Tuesday, 08:30–09:00 page 48
FTu1B.3, Advanced Modulation Techniques for Optical Interconnects,
Idelfonso Tafur Monroy, Danmarks Tekniske Universitet, Denmark, Tuesday,
09:00–09:30 page 48
FTu1B.4, Efficient Interconnection for Modern Computing Systems, Odile
Liboiron-Ladouceur, McGill Univ., Canada, Tuesday, 09:30–10:00 page
FTu2B.1, Bragg Grating Sensors for Extreme Temperature Applications, John
Canning, Univ. of Sydney, Australia, Tuesday, 10:30–11:00
FTu2B.4, Distributed Fibre Optic Sensing Techniques for Soil Slope Monitoring,
Luigi Zeni, Second Univ. of Naples, Italy, Tuesday, 11:30–12:00 page 54
FW1D.5, Nonlinear properties of silicon optical fibers from telecoms to the
mid-intrared, Anna Peacock, Univ. of Southampton, UK, Wednesday,
EW2D 1. New Meterials and Structures Force diag the Decention of Octional
FW2D. I, New Materials and Structures: Expanding the Properties of Optical
FIDES, Tanya Monto, Univ. of Adelaide, USA, Wednesday, T0.30–11.00
Fibers Pierre Lucas Univ of Arizona USA Wednesday 11:15–11:45
EWED 1 Diffraction limited Photonic Misro Spectrographs for Actronomy
Sergio Leon-Saval Univ of Sydney Australia Wednesday 16:00–16:30 page 86
EW5D 2 A green astro-comb for Earth-like evonlanet searches
Chib-Hao Li Harvard-Smithsonian Center for Astrophysics USA Wednesday
16:30–17:15
FW5D.3. Photonic Bandgap Fiber Laser for Sodium Guide Star Applications.
Akira Shirakawa, Univ. of Electro-Communications, Japan, Wednesday,
17:15–17:45
FW5D.4, Dispersion Engineering in Silicon Nitride, Martin Roth,
Astrophysikalisches Institut Potsdam (AIP), Germany, Wednesday,
17:45–18:15
FTh1B.1, Manufacturable Ultra-Low Loss Pure-Silica-Core Fiber for
Trans-Oceanic Telecommunication, Masaaki Hirano, Sumitomo Electric
Industries Ltd, Japan, Thursday, 08:00–08:30
FTh1B.6, High Spectral Efficiency Submarine Transmission Systems,
Dmitri Foursa, TE SubCom, USA, Thursday, 09:30–10:00 page 96
FTh3B.1, Cladding Pumped Erbium-doped Multicore Fiber Amplifiers for
Space Division Multiplexing, Kazi Abedin, OFS Laboratories, USA, Thursday,
13:30–14:00 page 98
FTh4B.1, Wavelength-Selective Switches for Multi-Mode Fiber Systems,
Koland Kyt, Alcatel-Lucent, USA, Thursday, 16:00–16:30

Subject Index

FiO 6: Integrated Photonics

Technical Sessions

FM3A, Silicon Photonics, Monday, 13:30–15:30 page 34 FM4A, Integrated Nanophotonics, Monday, 16:00–18:00 page 40 FTu1D, Modulators, Tuesday, 08:00–10:00 page 46 FTu1E, Materials for Plasmonics, Tuesday, 08:00–10:00 page 46
FTu2D, Integrated Photonic Quantum Circuits, Tuesday, 10:30–12:00 page 52
FTu2E, Parity-time Symmetry and Photonic Lattices, Tuesday, 10:30–12:00 page 52
FTu4D, Integrated Optics, Tuesday, 13:30–15:30 page 58
FTu5D, Microresonators, Tuesday, 16:00–17:30 page 64
FW1B, Photonic Crystal Cavities and Waveguides, Wednesday,
08:00-10:00
FW2B, Materials for integrated Photonic, Wednesday, 10:30–12:00 page 74 FW4B, Integrated Photonics, Wednesday, 13:30–15:30 page 80
FW5B, Hybrid Integrated Photonics, Wednesday, 16:15–18:15 page 86
FTh1D, Metamaterials, Thursday, 08:00–10:00 page 92
FTh3D, Beam Shaping and Enhanced Optical Transmission Plasmonics,Thursday, 13:30–15:30page 98FTh3E, Plasmonics, Thursday, 13:30–15:30page 98FTh4D, Imaging, Coherence, and Propagation, Thursday, 16:00–17:15page 104FTh4E, Optical Antennas and Plasmonic Waveguide Devices, Thursday,
16:00–18:00

Invited Speakers

FM3A.1, Large Scale and Low Power Photonic Circuits, Michael Watts, Massachusetts Institute of Technology, USA, Monday, 13:30–14:00 page 34
FM3A.2, Silicon Optical Switches for ROADM Applications, Shigeru Nakamura, NEC Corporation, Japan, Monday, 14:00–14:30
FM3A.3, CMOS Integrated Ge Detectors, Jason Orcutt, IBM TJ Watson Research Center, USA, Monday, 14:30–15:00
FM4A.1, Integrated Nanophotonics Technology for Optical Interconnects, Yurii Vlasov, <i>IBM TJ Watson Research Center, USA</i> , Monday, 16:00–16:30 page 40
FM4A.2, Silicon Photonics: From Drawing Board to a Working IC, Pieter Dumon, <i>Universiteit Gent, Belgium</i> , Monday, 16:30–17:00 page 40
FM4A.3, Filters and Spectrum Analyzers, and Their Applications in Classical and Quantum Telecommunications, Shayan Mookherjea, Univ. of California San Diego, USA, Monday, 17:00–17:30
FTu1D.1, Enhancing the Electrooptic Effect Using Modulation Instability, Bahram Jalali, <i>Univ. of California Los Angeles, USA</i> , Tuesday, 08:00–08:30 page 46
FTu1D.2, Electro-optic Effects in Silicon Waveguides, Heinrich Kurz, AMO <i>GmbH, Germany</i> , Tuesday, 08:30–09:00

FTu2D.1, Laser-written Integrated Photonic Quantum Circuits, Alexander
Szameit, Friedrich Schiller Univ., Germany, Tuesday, 10:30–11:00
FTu2D.2, Development of Photon Pair Sources Using Periodically Poled Lithium Niobate (PPLN) Waveguides and Fiber Optic Components, Lee
Oesterling, Battelle Memorial Institute, USA, Tuesday, 11:00–11:30
FTu2E.1, PT symmetry in optics, Demetrios Christodoulides, <i>Univ. of Central Florida, USA,</i> Tuesday, 10:30–11:00
FTu4D.2, Integrated Photonics for Space-Division Multiplexing, Nicolas Fontaine, <i>Alcatel-Lucent Bell Labs, USA,</i> Tuesday, 14:15–14:45 page 60
FW1B.1, Novel Effects in Photonic Crystal Cavities, Thomas Krauss, Univ. of York, UK, Wednesday, 08:00–08:30
FW1B.2, Silicon nanomembrane based Devices for Optical Sensing and On-chip Interconnects, Ray Chen, The Univ. of Texas, Austin, USA, Wednesday,
08:30–09:00
FW4B.1, Agile Silicon Photonic Systems for Sensing and Telecommunications, Axel Scherer, California Institute of Technology, USA, Wednesday,
13:30–14:00
FW4B.2, Silicon Nitride Optomechanical Crystals, Kartik Srinivasan, National Inst of Standards & Technology, USA, Wednesday, 14:00–14:30 page 80
FW5B.1, Nanomembrane Integrated Silicon Photonics and Flexible Optoelectronics, Weidong Zhou, Univ. of Texas at Arlington, USA, Wednesday, 16:15–16:45
FW5B.2, High Performance Photonic BiCMOS – A Novel Technology for the Large Bandwidth Era, Dieter Knoll, <i>IHP, Germany,</i> Wednesday,
16:45–17:15
FTh3E.1, Recent Progress in Plasmonic and Metallic Cavity Semiconductor
Nanolasers, Cun-Zheng Ning, <i>Arizona State Univ., USA</i> , Thursday, 13:30–14:00
FTh3E.2, Quantum Electrodynamics with Plasmonic Waveguides, Francisco Garcia-Vidal, Universidad Autonoma de Madrid, Spain, Thursday,
14:00–14:30

FiO 7: Quantum Electronics

Technical Sessions

FM3B, Nonlinear Optics in Micro and Nano-Optical Structures I, Monday,	
13:30–15:30	e 34
FM4B, Nonlinear Optics in Micro and Nano-Optical Structures II, Monday,	
16:00–17:45	e 40
FTu1A, Integrated Quantum Optics I, Tuesday, 08:00–10:00 pag	e 46
FTu2A, Integrated Quantum Optics II, Tuesday, 10:30–12:00 pag	e 52
FTu4A, Quantum Communications, Tuesday, 13:30–15:30 pag	e 58
FTu5A, Quantum Electronics I, Tuesday, 16:00–17:30	e 64

ех
σ
Ĕ
÷
e
bj
Su

FW1C, Quantum Optical Measurement and Quantum Technologies I, Wednesday, 08:00–10:00
FW2C Quantum Ontical Measurement and Quantum Technologies II
Wednesday, 10:30–12:00 page 74
FW4C, Quantum Optical Measurement and Quantum Technologies III,Wednesday, 13:30–15:30Wednesday, 13:30–15:30
FW5C, Quantum Electronics II, Wednesday, 16:00–18:00 page 86
FTh1C, Optics and Photonics of Disordered Systems I, Thursday, 08:00–10:00 page 92
FTh3C, Optics and Photonics of Disordered Systems II, Thursday, 13:30–15:30 page 98
FTh4C, Quantum Electronics III, Thursday, 16:00–18:00
Invited Speakers
FM3B.1, Microwave Generation Using Nonlinear Optics in High-Q Resonators, Kerry Vahala, <i>California Institute of Technology, USA</i> , Monday, 13:30–14:00 page 34
FM3B.2, Nanophotonic Structures for Extreme Nonlinearities On-Chip, Michal Lipson, <i>Cornell Univ., USA</i> , Monday, 14:00–14:30 page 34
FM4B.1, Modelocking and Synchronization of Chip-Based Frequency Combs,
Alexander Gaeta, Cornell Univ., USA, Monday, 16:00–16:30 page 40
FM4B.2, Interaction-free All-optical Switches for Quantum Applications,
Yuping Huang, Northwestern Univ., USA, Monday, 16:30–17:00 page 40
FTu1A.1, Ultrafast and Fault-Tolerant Quantum Communication over Long Distances, Liang Jiang, <i>Yale Univ., USA,</i> Tuesday, 08:00–08:30 page 46
FTu1A.2, Deterministic Creation and Strong Purcell Enhancement of
Cavities Tim Schroder MIT USA Tuesday 08:30–09:00 page 48
FTu2A.1, Experimental boson sampling with integrated photonics, Fabio
10:30–11:00 page 52
FTu4A.1. Manipulation of Photons and Cold Atoms: Scalable Quantum
Communication, Computation and Simulation, Jian-Wei Pan, USTC, China,
Tuesday, 13:30–14:00
FW1C.1, Quantum Motion and Microwave Fields, Tauno Palomaki, Univ. of
Colorado, USA, Wednesday, 08:00–08:30 page 68
FW2C.1, Interfacing Optical Quantum Memories with Telecommunication
Optical Fibres, Hugues de Riedmatten, <i>ICFO -The Institute of Photonic Sciences, Spain,</i> Wednesday, 10:30–11:00
FW4C.1, Entanglement and Simplified Quantum Information Operations,
Geoffrey Pryde, Griffith Univ., Australia, Wednesday, 13:30–14:00 page 80
FTh1C.1, Resonant and Non-resonant Electromagnetic Fields at the
Nanoscale with Active Photonic-plasmonic Nanostructures, Luca Dal Negro,
Boston Univ., USA, Thursday, 08:00–08:30 page 92

FiO 8: Vision and Color

Technical Sessions
FW3F, Low-cost Ophthalmic Instrumentation and Imaging, Wednesday, 11:00–12:00
FW4F, Ocular Aberrations and Wavefront Sensing, Wednesday, 13:30–15:00
FW5F, Retinal Imaging and Analysis, Wednesday, 16:00–18:00 page 87
Invited Speakers FW3F.1, mobileVision: A Face-mounted, Voice-activated, Non-mydriatic "Lucky" Ophthalmoscope, Ashok Veeraraghavan, <i>Rice Univ., USA</i> , Wednesday,
FW3E 2 NETRA-G: Towards a Subjective Self-Refraction Vitor Pamplona
EyeNetra Inc, USA, Wednesday, 11:30–12:00
FW4F.1, Evolution of Ocular Wavefront Sensing, Jim Schwiegerling, <i>Univ. of</i> <i>Arizona, USA,</i> Wednesday, 13:30–14:00
FW4F.2, Wavefront aberrations of the eye during the development of
refractive error, Nancy Coletta, New England College of Optometry, USA, Wednesday, 14:00–14:30
FW4F.3, Night Myopia Revisited with Adaptive Optics, Pablo Artal, Universidad de Murcia, Spain, Wednesday, 14:30–15:00
FW5F.1 , Progress on cellular resolution retinal imaging: setting the stage for translation between clinical and basic science. , Robert Zawadzki, <i>Univ. of</i> <i>California Davis, USA,</i> Wednesday, 16:00–16:30
FW5F.2, The Use of Masks and Split-detection in Adaptive Optics Scanning Light Ophthalmoscopy, Yusufu Sulai, <i>Univ. of Rochester, USA</i> , Wednesday, 16:30, 17:00
FW5F.3, Polarimetric Imaging of the Human Retina for the Quantification of Neural and Blood Vessel Status, Ann Elsner, Indiana Univ., USA, Wednesday, 17:00–17:30

Laser Science

Technical Sessions

LM3H, Ultracold Gases I, Monday, 13:30–15:30 page 35 LM4G, DLS Dissertation Award Session, Monday, 16:00–18:00 page 41 LM4H, Ultracold Gases II, Monday, 16:00–18:00 page 41 LTh1I, Quantum States of Matter and Light, Thursday, 08:00–09:45 page 47 LTu1H, Ultracold Gases III, Tuesday, 08:00–10:00 page 47 LTu2H, Attosecond Science I, Tuesday, 10:30–12:00 page 53 LTu2I, Quantum Information I, Tuesday, 10:30–12:00 page 53	LM3G, Semiconductor Nanooptics I, Monday, 13:30–15:30
LM4G, DLS Dissertation Award Session, Monday, 16:00–18:00 page 41 LM4H, Ultracold Gases II, Monday, 16:00–18:00 page 41 LTh1I, Quantum States of Matter and Light, Thursday, 08:00–09:45 page 43 LTu1H, Ultracold Gases III, Tuesday, 08:00–10:00 page 47 LTu1I, Semiconductor Nanooptics II, Tuesday, 08:00–10:00 page 47 LTu2H, Attosecond Science I, Tuesday, 10:30–12:00 page 53 LTu2I, Quantum Information I, Tuesday, 10:30–12:00 page 53	LM3H, Ultracold Gases I, Monday, 13:30–15:30
LM4H, Ultracold Gases II, Monday, 16:00–18:00 page 41 LTh1I, Quantum States of Matter and Light, Thursday, 08:00–09:45 page 43 LTu1H, Ultracold Gases III, Tuesday, 08:00–10:00 page 47 LTu1I, Semiconductor Nanooptics II, Tuesday, 08:00–10:00 page 47 LTu2H, Attosecond Science I, Tuesday, 10:30–12:00 page 53 LTu2I, Quantum Information I, Tuesday, 10:30–12:00 page 53	LM4G, DLS Dissertation Award Session, Monday, 16:00–18:00
LTh11, Quantum States of Matter and Light, Thursday, 08:00–09:45 page 93 LTu1H, Ultracold Gases III, Tuesday, 08:00–10:00 page 47 LTu1I, Semiconductor Nanooptics II, Tuesday, 08:00–10:00 page 47 LTu2H, Attosecond Science I, Tuesday, 10:30–12:00 page 53 LTu2I, Quantum Information I, Tuesday, 10:30–12:00 page 53	LM4H, Ultracold Gases II, Monday, 16:00–18:00
LTu1H, Ultracold Gases III, Tuesday, 08:00–10:00 page 47 LTu1I, Semiconductor Nanooptics II, Tuesday, 08:00–10:00 page 47 LTu2H, Attosecond Science I, Tuesday, 10:30–12:00 page 53 LTu2I, Quantum Information I, Tuesday, 10:30–12:00 page 53	LTh1I, Quantum States of Matter and Light, Thursday, 08:00–09:45 page 93
LTu1I, Semiconductor Nanooptics II, Tuesday, 08:00–10:00page 47LTu2H, Attosecond Science I, Tuesday, 10:30–12:00page 53LTu2I, Quantum Information I, Tuesday, 10:30–12:00page 53	LTu1H, Ultracold Gases III, Tuesday, 08:00–10:00
LTu2H, Attosecond Science I, Tuesday, 10:30–12:00	LTu11, Semiconductor Nanooptics II, Tuesday, 08:00–10:00 page 47
LTu2I, Quantum Information I, Tuesday, 10:30–12:00 page 53	LTu2H, Attosecond Science I, Tuesday, 10:30–12:00
	LTu2I, Quantum Information I, Tuesday, 10:30–12:00

LTu4H, Resonators and Photonic Crystals I, Tuesday, 13:30–15:30 page 59
LTu4I, Semiconductor Nanooptics III, Tuesday, 13:30–15:30 page 59
LTu5H, Chemical and Biological Sensing I, Tuesday, 16:00–17:30 page 65
LTu5I, Quantum Information II, Tuesday, 16:00–17:30 page 65
LW1G, Resonators and Photonic Crystals II, Wednesday, 08:00–10:00 page 69
LW1H, Attosecond Science II, Wednesday, 08:00–10:00
LW11, Filamentation I, Wednesday, 08:00–10:00
LW2H, Quantum Information III, Wednesday, 10:30–12:00 page 75
LW2I, Solid-State Optical Physics, Wednesday, 10:30–12:00 page 75
LW4H, Resonators and Photonic Crystals III, Wednesday, 13:30–15:30 page 81
LW4I, Filamentation II, Wednesday, 13:30–15:15
LW5H, Attosecond Science III, Wednesday, 16:00–18:15 page 87
LW5I, Chemical and Biological Sensing II, Wednesday, 16:00–17:30 page 87

Invited Speakers

LM3G.1, Ultrashort-pulse Generation Using VECSELs and MIXSELs, Ursula
Keller, ETH Zurich, Switzerland, Monday, 13:30–14:00
USA, Monday, 14:00–14:30
LM3G.3, Quantum Optical Experiments in Semiconductor Quantum Well
Systems, Steven Cundiff, NIST & Univ. of Colorado, USA, Monday,
14:30–15:00
LM3G.4, Quantum Theory of Dropletons, Mackillo Kira, Univ. Marburg, USA,
Monday, 15:00–15:30 page 39
LM3H.1, Spin-dependent Gauge Fields in Atomic Gases, Ian Spielman,
JQI, NIST and UND, USA, Monday, 13:30–14:00
LivisH.2, vortex Dynamics in Spin-orbit Becs, Alexander Fetter, Stantord
M2H 3 Experiments With Bess Einstein Condensator in a Spin orbit
Coupled Optical Lattice Peter Engels Washington State Univ. USA Monday
14:30–15:00
LM3H.4, Simulating Many-Body Dynamics in Systems of Cold Atoms,
Molecules, and Ions, Johannes Schachenmayer, Univ. of Colorado at Boulder
JILA, USA, Monday, 15:00–15:30 page 39
JILA, USA, Monday, 15:00–15:30 page 39 LM4H.1, Coherent Optics of Magnon Waves in a Spinor Bose-Einstein
JILA, USA, Monday, 15:00–15:30 page 39 LM4H.1, Coherent Optics of Magnon Waves in a Spinor Bose-Einstein Condensate, Dan Stamper-Kurn, Univ. of California Berkeley, USA, Monday, 14:00–14:20
JILA, USA, Monday, 15:00–15:30 page 39 LM4H.1, Coherent Optics of Magnon Waves in a Spinor Bose-Einstein Condensate, Dan Stamper-Kurn, Univ. of California Berkeley, USA, Monday, 16:00–16:30 page 41 MMH 2, Managalasia Spinor Base Einstein
JILA, USA, Monday, 15:00–15:30 page 39 LM4H.1, Coherent Optics of Magnon Waves in a Spinor Bose-Einstein Condensate, Dan Stamper-Kurn, Univ. of California Berkeley, USA, Monday, 16:00–16:30 page 41 LM4H.2, Monopoles in Spinor Bose-Einstein Condensates, David Hall, Amberst College USA Monday, 16:30–17:00
JILA, USA, Monday, 15:00–15:30 page 39 LM4H.1, Coherent Optics of Magnon Waves in a Spinor Bose-Einstein Condensate, Dan Stamper-Kurn, Univ. of California Berkeley, USA, Monday, 16:00–16:30 16:00–16:30 page 41 LM4H.2, Monopoles in Spinor Bose-Einstein Condensates, David Hall, Amherst College, USA, Monday, 16:30–17:00 page 41 LM4H.3 Lightengod at a Spail's Page: Polativity Moots Ultracold Physics
JILA, USA, Monday, 15:00–15:30 page 39 LM4H.1, Coherent Optics of Magnon Waves in a Spinor Bose-Einstein Condensate, Dan Stamper-Kurn, Univ. of California Berkeley, USA, Monday, 16:00–16:30 16:00–16:30 page 41 LM4H.2, Monopoles in Spinor Bose-Einstein Condensates, David Hall, Amherst College, USA, Monday, 16:30–17:00 page 41 LM4H.3, Lightspeed at a Snail's Pace: Relativity Meets Ultracold Physics, Lincoln Carr, Colorado School of Mines, USA, Monday, 17:00–17:30 page 43

LM4H.4, Probing Quantum Many-body Physics with Bright Matter-wave Solitons and Ultracold Polar Molecules, Simon Cornish, Univ. of Durham, UK, Manday, 17:20, 18:00
LTu1H.1, Quantum Hydrodynamics and Turbulence in Atomic Bose-Einstein Condensates, Makoto Tsubota, Osaka City Univ., Japan, Tuesday, 08:00–08:30 page
LTu1H.2, Clusters and Cascades: Vortex Motion in 2D Quantum Turbulence, Ashton Bradley, Univ. of Otago, New Zealand, Tuesday, 08:30–09:00
LTu1H.3, Phase Slips and Weak Links: Experiments with Superfluid Atom Circuits, Gretchen Campbell, Joint Quantum Institute, NIST and the Univ. of Maryland, USA, Tuesday, 09:00–09:30
LTu11.1, Ge Nanowire THz Dynamics, Theodore Norris, Univ. of Michigan, USA, Tuesday, 08:00–08:30
LTu11.2, Semiconductor Quantum Light Sources for Integrated Quantum Photonic Applications, Peter Michler, Univ. of Stuttgart, Germany, Tuesday, 08:30–09:00
LTu11.3, Optical Control of Electron and Nuclear States, Duncan Steel, Univ. Michigan, USA, Tuesday, 09:00–09:30
LTu11.4, Quantum-dot Microcavity Lasers with Superradiant Coupling and Non-classical Light Emission, Frank Jahnke, Univ. of Bremen, Germany, Tuesday, 09:30, 10:00
LTu2H.1, Probing Atomic and Molecular Processes by Intense Attosecond Pulses, Katsumi Midorikawa, <i>RIKEN Center for Advanced Photonics, Japan,</i>
Tuesday, 10:30–11:00 page 53 LTu2H.2, Attosecond Electronic Band Dynamics, Stephen Leone, Univ. of Children in Dentation of the state of t
LTu2I.1, Raman Memories for Synchronized Quantum Photonics, Joshua Nunn, Univ. of Oxford, UK, Tuesday, 10:30–11:00
LTu2I.2, Practical Limits of an Optimized Quantum Receiver, Christoph Marquardt, <i>Max Planck Institute for the Science of Light, Germany,</i> Tuesday,
11:00–11:30
Optical Light, Cindy Regal, Univ. of Colorado at Boulder JILA, USA, Tuesday, 11:30–12:00
LTu4H.1, Cavity QED in Quantum Dot-photonic Crystal Nanocavity Coupled Systems, Yasuhiko Arakawa, Univ. of Tokyo, Japan, Tuesday, 13:30–14:00 page 59
de Sterke, The Univ. of Sydney, Australia, Tuesday, 14:00–14:30 page 59
Devices, Arka Majumdar, Univ. of Washington, Seattle, USA, Tuesday, 14:30–15:00
LTu4H.4, Diamond Quantum and Nonlinear Photonics, Marko Loncar, Harvard Univ., USA, Tuesday, 15:00–15:30

\sim
<u>a</u>
<u> </u>
õ
÷
С.
<u> </u>
്റ്
0,

LTu4I.1, Terahertz Experiments on Microcavities, Yun-Shik Lee, Oregon State
Univ., USA, Tuesday, 13:30–14:00
LTu4I.2, Coherent Bloch Oscillations Driven by Ultrastrong THz Excitation,
Rupert Huber, Univ. of Regensburg, Germany, Tuesday, 14:00–14:30
LTu5H.1, The Making of 3D Multi-Resolution Motion Pictures for the
Microscopic World, Haw Yang, Princeton Univ., USA, Tuesday, 16:00–16:30 page 65
LTu5H.2, Bio-light for optical sensing, Seok-Hyun Yun, Harvard Medical
School, USA, Tuesday, 16:30–17:00 page 65
LTu5H.3, Sensing of Protein Reactions Using Pulsed Laser Based Transient
Grating, Masahide Terazima, <i>Kyoto Univ., Japan,</i> Tuesday, 17:00–17:30 page 67
LTu5I.1, Squeezing Enhanced Quantum Operation, Ulrik Andersen. Danmarks
Tekniske Universitet, Denmark, Tuesday, 16:00–16:30
LTu5I.2, Harnessing the Time-frequency Structure of Ultrafast Quantum States,
Benjamin Brecht, Univ. of Paderborn, Germany, Tuesday, 16:30–17:00 page 65
LTu5I.3, Engineering Parametric Down-conversion in Multimode Nonlinear
Waveguides, Konrad Banaszek, Univ. of Warsaw, Poland, Tuesday,
17:00–17:30
LW1G.1, Spontasneous Emission of Er atoms in Metallic Nanocavity,
Yong-Hee Lee, KAIST, Korea, Wednesday, 08:00–08:30 page 69
LW1G.2, Quantum Nano-Photonic Devices Based on Rare-Earth Doped
Crystals, Andrei Faraon, California Institute of Technology, USA, Wednesday,
08:30–09:00
LW1G.3, Topological States of Photons in Nanostructures, Alexander
Poddubny, <i>Ioffe Institute, Russia,</i> Wednesday, 09:00–09:30 page 71
LW1H.1, Generation of Bright Isolated Attosecond Soft X-Ray Pulses Driven
by Multi-Cycle Mid-Infrared Lasers, Ming-Chang Chen, Univ. of Colorado
Boulder, Taiwan, Wednesday, 08:00–08:30
LW1H.2, Waveforms for Optimal Enhancement of High-order Harmonics by
Synthesizing Two- or three-color Laser Fields, Chii Dong Lin, Kansas State Univ.,
USA, Wednesday, 08:30–09:00
LW1H.3, A 200 TW Driving Laser for Generating Microjoule Level Isolated
Attosecond Pulses, Zenghu Chang, Univ. of Central Florida, CREOL, USA,
Wednesday, 09:00–09:30
LW1H.4, Tabletop Nanometer Extreme Ultraviolet Imaging in an Extended
Reflection Mode, Daniel Adams, NIST/JILA/CU, USA, Wednesday,
09:30–10:00
LW11.1, Title TBD, Andrius Baltuska, Technische Universitait Wien, Austria,
Wednesday, 08:00–08:30
LW11.2, The Role of Filamentation in THz Wave Air Photonics, Xi-Cheng
Zhang, Univ. of Rochester, USA, Wednesday, 08:30–09:00 page 69
LW1I.3, Fully Microscopic Studies of Strong-Field Atom Ionization, Stephan
Koch, Philipps Universitaet Marburg, Germany, Wednesday, 09:00–09:30 page 71

LW2H.1, Quantitative Quantum Communication: Practical Realizations of
Exponential Quantum Advantage, Norbert Lutkenhaus, Univ. of Waterloo,
Canada, Wednesday, 10:30–11:00 page 75
LW2H.2, Experimental Realisation of a Measurement-based Noiseless Linear
Amplifiers, Thomas Symul, Australian National Univ., Australia, Wednesday,
11:00–11:30 page 77
LW2H.3, Quantum Communication in Space, Rupert Ursin, Austrian Academy of
Sciences, Austria, Wednesday, 11:30–12:00 page 77
LW4H.1, Nanocavity and Nanobeam Waveguide Optomechanics, Paul Barclay,
Univ. of Calgary, Canada, Wednesday, 13:30–14:00 page 81
LW4H.2, Coupling Spins in Quantum Dots to Photonic Crystal Cavities, Sam
Carter, Naval Research Laboratory, USA, Wednesday, 14:00–14:30 page 81
LW4H.3, A Nanophotonic Quantum Phase Switch with a Single Atom, Jeff
Thompson, Harvard Univ., USA, Wednesday, 14:30–15:00 page
LW4H.4. Breaking the Mirror Symmetry of Spontaneous Emission Via Spin-orbit
Interaction of Light, Arno Rauschenbeutel, Vienna Univ. of Technology, Austria,
Wednesday, 15:00–15:00 page
LW4I.1, Air Waveguides Generated by Femtosecond Filaments, Jared
Wahlstrand, Univ. of Maryland at College Park, USA, Wednesday,
13:30–14:00
LW4I.2, Roque Events in the Atmospheric Turbulence of Multifilaments,
Gunter Steinmeyer, Max Born Institute, Germany, Wednesday, 14:00–14:30 page 81
LW4I.3, Laser Filament-induced Ice Multiplication under Cirrus Cloud
Conditions, Jean Pierre Wolf, Universite de Geneve, Switzerland, Wednesday,
14:30–15:00 page 83
LW5H.1, Attosecond Probing of Atomic & Molecular Structure, Louis
DiMauro, Ohio State Univ., USA, Wednesday, 16:00–16:30 page 87
LW5H.2. Probing and Controlling Electron Dynamics in Atoms and Molecules
with Attosecond Electron Wave Packets, Xinhua Xie, Vienna Univ. of Technology.
Austria, Wednesday, 16:30–17:00
LW5H.3. Sub-10 fs DUV Laser Pulses and Their Application to Ultrafast
Molecular Spectroscopy and Dynamics, Takayoshi Kobayashi, Univ. of Electro-
Communications, Japan, Wednesday, 17:00–17:30
LW5I.1. Single-Beam Stimulated Raman Scattering for sub-Microgram
Standoff Detection of Explosives, Marcos Dantus, Michigan State Univ., USA,
Wednesday, 16:00–16:30 page 87
LW5I.2. Chemical Imaging of Single Nanoparticles by Photothermal
Microscopy, Bogdan Dragnea, Indiana Univ., USA, Wednesday, 16:30–17:00 . page 87
LW5I.3, Time Resolved Frequency Comb Spectroscopy for Studving Gas
Phase Free Radical Kinetics, Mitchio Okumura, California Institute of Technology,
USA, Wednesday, 17:00–17:30 page 89

LTh1H.1, Coherent Control of Light-Matter Interactions Using a Quantum Dot in a Cavity, Edo Waks, Univ. of Maryland at College Park, USA, Thursday, LTh1H.2, Quantum Emitters in Optical Nanocavities: Physics and Applications, Jelena Vuckovic, Stanford Univ., USA, Thursday, 08:30–09:00page 93 LTh1H.3, Nonlinear Quantum Optics and Precision Measurements in Mesoscopic High-Q Optical Cavities, Chee Wei Wong, Columbia Univ., USA, Thursday, 09:00-09:30 page 95 LTh3H.1, Resonant Radiation from Collapsing Light Pulses and Spatiotemporal Light Bullets, Daniele Faccio, Heriot-Watt Univ., UK, Thursday, 13:30–14:00 . . . page 99 LTh3H.2, Stimulated Emission from Filaments in Air, Andre Mysyrowicz, ENSTA, LTh3H.3, Interaction of Fi laments with Their Surroundings, Jean-Claude Diels, LTh3H.4, Non-perturbative Time-domain Modeling of Light-matter Interactions for Computer Simulation in Extreme Nonlinear Optics, Miroslav Kolesik, Univ. of Arizona, USA, Thursday, 15:00–15:30 page 103 LTh3I.1. Optical Cavity-based Detection of Magnetic Field Effects in Condensed Phases, Stuart MacKenzie, Univ. of Oxford, USA, Thursday, LTh3I.2, Evanescent Wave Cavity Ring-down Spectroscopy in Application to Chemical and Biological Sensing, King-Chuen Lin, National Taiwan Univ., Taiwan, LTh3I.3, Bioimaging and Quantum Sensing Using Nitrogen-Vacancy Centers in Nanodiamonds, Huan-Cheng Chang, Academia Sinica, Taiwan, Thursday, Symposium on the 50th Anniversary of Optical Sciences

Technical Sessions

JS1A, Symposium on the 50th Anniversary of Optical Sciences, Sunday,	
16:00–18:30	3
Invited Speakers	
IS1A 2 Atoms and Photons: One Perspective on Quantum Optics at the	

JS1A.6, Semiconductor Physics at the Optical Sciences Center, Stephan

ge 33
ge 33
ge 33

Symposium on Translational Biophotonics - Focus on Cancer

Technical Sessions

FM3F, Symposium o	on Translational	Biophotonics – Focus	on Cancer, Monday,
13:30–15:30			page 35

Invited Speakers

FM3F.1, Knowledge of the Principles of Oxygen Transport in Solid Cancers Enables Translational Decisions, Mark Dewhirst, Duke Univ., USA, Monday,
13:30–14:00
FM3F.2, Preclinical and Clinical Chemotherapy Response Monitoring with
Diffuse Optical Technologies, Darren Roblyer, Boston Univ., USA, Monday,
14:00–14:30
FM3F.3, What Can We Learn About Cancer Therapy from Single Cell Tracking,
Charles Lin, Massachusetts General Hospital, USA, Monday, 14:30–15:00 page 37
FM3F.4, Molecular and Metabolic Imaging of Tumors to Inform Therapeutic
Interventions, Narasimhan Rajaram, Duke Univ., USA, Monday, 15:00–15:30 page 39

Symposium on 50 Years of Lasers in Ophthalmology and the New ANSI Safety Standard

Technical Sessions

FW1F, Symposium on 50 Years of Lasers in Ophthalmology and the New
ANSI Safety Standard I, Wednesday, 08:00–10:00 page 69
FW2F, Symposium on 50 Years of Lasers in Ophthalmology and the New
ANSI Safety Standard II, Wednesday, 10:30–11:00

Invited Speakers:

FW1F.1, Lasers in retinal imaging, Stephen Burns, Indiana Univ., USA,	
Wednesday, 08:00–08:30	age 69
FW1F.2, The ANSI 2014 Standard for Safe Use of Lasers, Francois Delori,	
Schepens Eye Research Institute, USA, Wednesday, 08:30–09:00	age 69
FW1F.3, Laser Technologies Enhancing OCT Performance, Wolfgang Drexler,	
Medizinische Universitait Wien, Austria, Wednesday, 09:00–09:30	age 71

FW1F.4, Application of Second Harmonic Generation Imaging for Visualization of the Characteristics of Corneal Stromal Collagen in Normal and Diseased Eyes, Naoyuki Morishige, Yamaguchi Univ., USA, Wednesday, 09:30–10:00 page 73
FW2F.1, The Limits of Human Vision, Josef Bille, Ruprecht-Karls-Universitat Heidelberg, Germany, Wednesday, 10:30–11:00
Symposium on Laser Particle Acceleration and Novel Acceleration Methods
Technical Sessions
FW4E, Symposium on Laser Particle Acceleration and Novel Acceleration
Methods I, Wednesday, 13:30–15:30
FW5E, Symposium on Laser Particle Acceleration and Novel Acceleration
Methods II, Wednesday, 16:00–18:00
Invited Speakers:
FW4E.1, Electron Acceleration Experiments by Using a Density-tapered Capillary Plasma Source, Hyyong Suk, <i>GIST</i> , <i>Korea</i> , Wednesday,
FW4E.2, Development of a High Repetition Rate Laser-plasma Accelerator for Application to Ultrafast Electron Diffraction, Jerome Faure, LOA, France, Wednesday, 14:00–14:30
FW4E.3, Multi-GeV laser-plasma Electron Accelerators, Michael Downer, Univ. of Texas at Austin, USA, Wednesday, 14:30–15:00
FW4E.4, Multi-GeV Laser Plasma Accelerators Using Plasma Waveguides and Integration of Multiple Acceleration Modules, Jeroen Van Tilborg,
Lawrence Berkeley National Laboratory, USA, Wednesday, 15:00–15:30 page 84
FW5E.1, Optimized Photonic Structures for GV/M Laser Acceleration of Electrons, James Rosenzweig, Univ. of California Los Angeles, USA, Wednesday,
16:00–16:30
FW5E.2, Laser Accelerator on a Chip (>300MeV/m): A Path to TeV Energy Scale Physics and Table Top Coherent X-rays, Robert Byer, Stanford Univ., USA,
Wednesday, 16:30–17:00
FW5E.3, Dielectric Laser Acceleration From the Proof-of-concept
Hommelhoff Friedrich-Alexander-Universitait Frlangen Germany Wednesday
17:00–17:30

Symposium on Radiation Reaction in Ultra-High Intensity Lasers

Technical Sessions

FTh1F, Symposium on Radiation Reaction in Ultra-High Intensity Lasers I,	
Thursday, 08:00–10:15	3
FTh3F, Symposium on Radiation Reaction in Ultra-High Intensity Lasers II,	
	\sim

Invited Speakers:

FTh1F.1, Nonlinear Radiation Effects with Filaments - Inside and Outside, Martin Richardson, Univ. of Central Florida, CREOL, USA, Thursday,
08:00-08:45
FTh1F.2, Solid-Density Experiments for Laser-Based Thomson Scattering: Approaching the Radiation Dominated Regime, John Nees, Univ. of Michigan, USA, Thursday, 08:45–09:15
FTh1F.3, High Repetition Rate kJ-class Nanosecond to Femtosecond Lasers, Todd Ditmire, <i>National Energetics, USA</i> , Thursday, 09:15–09:45 page 95
FTh1F.4, Radiation Reaction and Ultra-high Intensity Lasers, Frederic Hartemann, Lawrence Livermore National Laboratory, USA, Thursday,
U9:45-10:15 page 97
Electrodynamics, Robert O'Connell, Louisiana State Univ., USA, Thursday, 13:30–14:15
FTh3F.2, Probing Radiation-Reaction in the High Acceleration Regime, Yaron Hadad, <i>Univ. of Arizona, Israel,</i> Thursday, 14:15–14:45
FTh3F.3, Radiation Reaction of Relativistic Electrons Scattered by Relativistic Intensity Light, Donald Umstadter, Univ. of Nebraska Lincoln,
USA, Thursday, 14:45–15:15 page 101
FTh3F.4, Radiation Reaction and the Quantum Langevin Equation, George Ford, <i>Univ. of Michigan, USA,</i> Thursday, 15:15–15:45

Key to Authors and Presiders

Aadhi, A. - JTu3A.11 Abbarchi, M. - FM3B.3 Abdolvand, Amir - FM4C.6 Abedin, Kazi S. - FTh3B.1, FTh1B Abouraddy, Ayman F. - FTh1C.3, FTu4A.7 Abushagur, Mustafa - FTh4E.5 Acharya, Megha - FTu4F.3 Adam, Roman - LW5H.5 Adams, Daniel - LW1H.4 Adibi, Ali - FTh4C.5 Aeschlimann, Martin - LW5H.5 Agarwal, Anuradha M. - FTh1E.3, FTu4D.3, JW3A.26 Agrawal, Govind - FTu2G.1, FW4D.6 Ahmed, Nisar - FTh3B.7, FTh4B.6 Akondi, Vyas - JW3A.40 Al Balushi, Ahmed - FTh1E.7 Alanzi, Saud - FTh3B.3, JTu3A.37 Aldossari, M. - FTu5C.5 Alex, Zachariah C. - FM3E.5 Alfalou, Ayman - FTu5C.5 Alhasan, Sarmad - FTh4C.3 Alic, Nikola - FM3C.6, FM4C Allen, Trevor - FW4B.4 Almand-Hunter, Andrew E. - LM3G.3 Alonso, Miguel A. - FTu4C.4 Amaral, Anderson M. - FTu1C.6 Ambuj, Anindya - JTu3A.10 Amezcua-Correa, Rodrigo - FTu4B.3 An, Yingye - FTu5A.5, JTu3A.39 Andersen, Ulrik L. - LTu5I.1 Anderson, Benjamin - FTh3C.6, FTh3C.7 Anderson, Brian P. - LTu1H.4, LM3H Anderson, Frederick G. - FM3A.3 Anderson, Jack G. - FTu2F.5 Andrews, Reed - LTu2I.3 Ang, Lav Kee - FTh3E.6 Anguita, Jaime A. - FTh3B.5 Ansari, Vahid - LTu5I.2 Antier, Marie - FTh3A.4 Antonio-Lopez, J. Enrique - FTu4B.3 Aoki, Takao - FW2C.4 Appel, Jürgen - FW1C.2 Arai, Kenichi - JW3A.31

Arakawa, Yasuhiko - LTu4H.1 Aramburu, Ibon - FTh4C.7 Arce-Diego, Jose L. - FTu2F.6, FTu4F.1 Ardey, Abhijeet - FTu1D.6, FTu2A.5 Ardizzone, V. - FM3B.3 Arqueta, Victor - FW4G.8 Arianpour, Ashkan - FTh1G.4 Arissian, Ladan - JTu5G.1, LTh3H.3 Armstrong, Cameron R. - FW5C.8 Arnold, Cord L. - JTu4E.3 Arrazola, Juan Miguel - LW2H.1 Arrovo, Maximino L. - JW3A.27 Artal, Pablo - FW4F.3, FW1F Ashok, Amit – FW2E Assefa, Solomon - FM3A.3, FM3A.4 Ates, Serkan - LW2I.1 Aubin, Seth A. - LTh11.7 August, Yitzhak - FM3E.4 Avolio, Biagio - FTu2B.4 Awan, Kashif M. - FW1B.5 Awatsuji, Yasuhiro - FW4B.6

В

Ba, Cheikhou - FTh3D.6, FW2B.3 Babinec, Thomas - LTh1H.2 Bachman, Daniel - FM3A.5 Backer, Adam S. - FM3E.2 Badar, Mudabbir - JW3A.22 Badolato, Antonio - FW1B.3, LW2I.1 Bae, Euiwon - FTh1E.6, FTu5F.4 Bagci, Tolga - FW1C.2 Bagnell, Kristina - FTu1G.4 Bahabad, Alon - FTh4E.3, FTu1G.3, JTu4E.4 Baili, Amira - FM3B.6 Bajcsy, Michal - LTu4H.3 Balslev-Clausen, David - LTh4H.2 Baltuska, Andrius - LW11.1 Banaszek, Konrad - LTu5I.3 Banerjee, Bhaskar - FTu4F.4 Banici, Romeo - LW11.5 Bansal, Lalit - FTh3B.1 Banzer, Peter - FTu4C.1 Bao, Han - JTu3A.28 Barbano, Emerson C. - JTu3A.21 Barbieri, Marco - FTu4A.6 Barbieri, Nacholas - FTh1F.1

Barbiero, Martina - FTu2F.1 Barclay, Paul E. - LW4H.1 Bariani, Francesco - FW1C.5 Barka, Ibrahim - JTu3A.37 Barrett, Harry - JS1A.4 Bartal, Guy - FTh3D.5, FTh3E.4 Barthelemy, Alain - FW4D.5 Bartley, Tim J. - FTu4A.6 Bartolino, Roberto - FTu2G.5 Barton, Jennifer K. - FTu4F.2, FTu4F.5, JS1A.5, FTu4F.7 Barwicz, Tymon - FM3A.4 Bashkansky, Mark - FW4C.6, LTh1I.3 Basiri, Ali - FTh3C.4 Bass, Michael - JTu3A.8 Bates, Mark - FW4G.6 Baudelet, Matthieu - FTh1F.1 Baudin, E. - FM3B.3 Bauer, Thomas - FTu4C.1 Baumann, Esther - FW5G.4 Bayn, Igal - FTu1A.2 Beach, Kory - JW3A.24 Beadie, Guy - FTh1G.2 Beams, Ryan - FW2B.1 Beaucamp, Anthony - FTh4G.3 Beaudoin, Normand - JTu3A.29 Beaurepaire, Benoit - FW4E.2 Becerra Chavez, Francisco – LTu2I Béchu, Muriel - LW1G.4 Becker, Andreas - JTu5G.3, LW1H.1 Bedard, Noah - FTu4F.6 Bednarczyk, Iwona - JW3A.28 Beha, Katja - FM4B.4 Bekenstein, Rivka - FW5E.4 Belli, Federico - FM4C.6 Ben Salem, Amine - FW1D.3 Benedetti, C. - FW4E.4 Bennet, Adam - FW4C.1 Bennett, Andrew - JTu3A.8 Bentz, Brian - FM4F.1 Berg, Cassidy A. - FTu4C.2 Bergmann, Ralf B. - FTh4G.2 Bergues, Boris - JTu4E.2 Berman, Dainet - FW2B.6 Berman Mendoza, Dainet - FW2B.5, FW4D.2 Bernard, John E. - FW5C.2

Berry, Christopher W. - FTh3E.5 Beydaghyan, Gisia - FW2B.3 Bhaduri, Basanta - FW2A.3 Bharadwaj, Divya - LTu5I.3 Bharqava, Rohit - FTh4D.5 Bhattacharya, Nandini - FTh1E.2, FTh3D.2 Bhattacharya, Shanti - FTh3G.7 Bhunia, Arun K. - FTh1E.6, FTu5F.4 Bianco, Vittorio - FTh1E.4, FTu4C.7 Bichra, Mohamed - FW5A.3 Bille, Josef - FW2F.1 Binder, Rolf - FM3B.3, FW5C.3, LTu41.3, LTu41.4 Birech, Zephania - FTu1G.8 Birkholz, S. - LW4I.2 Birnbaum, Reuven - LW4I.1 Biswas, Roshni - FTu1F.2 Bjork, Bryce - LW5I.3 Black, John - FTu4F.5 Blackmon, Richard - FTu5F.2 Blanche, Pierre-Alexandre - FTh1B.2 Blau, Yochai - FTh3D.5 Bloch, J. - FM3B.3 Blumberg, Dan G. - FM3E.4 Bo, Fang - FTh3C.5 Boas, David A. - FW1E.4 Bochterle, Joerg - LTh4H.4 Bodenmüller, Daniel - FW5D.4 Böhm, Michael - FW5D.4 Boivin, Maxime - JTu5G.1 Bolduc, Eliot - FW4C.4 Boominathan, Vivek - FW3F.1 Borges, Ben-Hur V. - FTh3D.7 Borlaug, David - FTu1D.1 Borshch, Volodymyr - FTh4B.4 Botten, Lindsay - LTu4H.2, FTh4E.7 Böttge, Christoph - LTu4I.1 Bouchard, Frederic - FTu2A.3 Bouchez, Romain - FTu5C.4 Bourderionnet, Jerome - FTh3A.4 Bourgeois, Marc - LTu2H.3 Bowman, Trevor - FTh4G.4 Boyd, Robert W. - FM4E.4, FM4E.5, FTh3B.7, FTh4A.4, FTu1G.6, FTu2A.3, FW1B.5 Boyraz, Ozdal - FTu1D.1

Bracker, Allan S. - LW4H.2 Bradley, Ashton - LTu1H.2 Bradu, Adrian - FTu2F.3 Brady, David J. - FTu2F.5 Bragheri, Francesca - FW4A.7 Braie, Danielle - FTu1C.3 Branciard, Cyril - FW5C.1 Brecht, Benjamin - LTu5I.2 Brée, C. - LW4I.2 Brereton, Peter G. - LW4H.2 Bretenaker, Fabien - FTu5C.3, FTu5C 4 Brignon, Arnaud - FTh3A.4 Brion, Etienne - FTu5C.4 Brodbeck, Sebastian - LW2I.2 Brodsky, Misha – FW4D Bromberg, Yaron - FTh1C.4, FTh3C.4, FW4G.5 Brosseau, C. - FTu5C.5 Brown, J. Quincy - FM4F.3, FW1E.2 Brown, Robert - FW2A.4 Brown, Thomas G. - FM3D.7, FTu4C.4, JW3A.36 Brownlee, John - FTu4F.7 Brownless, J. Scott - LTu4H.2 Bruno Wetterich, Caio - FTu2F.2 Brusa, Guido - JW3A.8 Brusch, Anders - LTh4H.2 Buch, Shaival - FW4D.6 Buchmann, Lukas - FW1C.5 Buck, Alexander - FTu4G.1 Buckley, Sonia - LTu4H.3 Bui, Khoa V. - FM4D.7 Bui, Thinh Q. - LW5I.3 Bulanov, S. S. - FW4E.4 Buller, Gerald S. - FTu2G.4 Bülters, Mike - FTh4G.2 Burge, James H. - FW5A.1, JS1A.8 Burns, Stephen A. - FTh1G.3, FW1F.1, FW5F3 Busch, Thomas - FTu5B.2 Bushuev, Vladimir A. - FTh3D.8 Bussmann, Michael - FTu4G.2 Bustard, Philip J. - LTh11.2 Button, Brian - FTu5F.2 Bver, Robert L. - FW4E.1

Bykov, Anton Y. - FTh1D.2

Chang, Yu-Chi - FW5B.5

С Caetano, M. - JTu3A.19 Caldwell, Joshua D. - FTh4E.4 Calle Casas, Maira Alejandra -FTu2B.2 Campbell, Gretchen K. - LTu1H.3 Campbell, Melanie C. - FW5F.4, FW/4F Campi, Filippo - JTu4E.3 Canfield, Brian K. - FTh4G.4 Canning, John - FTu2B.1, FTu5B Cao, Hui - FTh1C.4, FTh1C.6, FTh1C.7, FTh3C.4, FTu1G.7, FTu5C.1, FW2G.2, FW4G.5, FW5C.5, LTh4I.3 Cao, Jiangiu - FTu5A.5, JTu3A.39 Cao, Qian - FTh1A.6, FTu5A.6 Cao, Qiang - FW4A.6 Cao, Ting - LW2I.4 Cao, Yaoyu - FW2A.1 Cao, Zheng - FW2B.2 Capasso, Federico - FM3D.1 Cardona Maya, Yamile - FTu2B.2, FW4D.4 Carlson, David R. - FTh1A.2, JTu3A.22 Carlström, Stefanos - JTu5G.4 Carney, P. Scott - FTh4D.5, FTu4C.6, FTh4D Carr, Lincoln - LM4H.3 Carter, Sam - LW4H.2 Casas-Bedoya, Alvaro – Ftu1F Caspani, Lucia - FTu2A.2 Castelletto, Stefania - FTu2F.1 Cavalcanti, Eric - FW5C.1 Cense, Barry - FW5F.3 Cerjan, Alexander - FW2G.2 Chaboyer, Zachary J. - FTu2D.3 Chakraborty, Chitraleema - FW2B.1 Chakravarty, Abhijit - FTh3B.3, JTu3A.37 Chaloupka, Jan L. - JW3A.5 Chan, K. - FM3B.3 Chandrasekar, Rohith - FM4B.5 Chang, Guoging - FW5D.2 Chang, Hsuan-Ting - JW3A.25 Chang, Huan-Cheng - LTh3I.3 Chang, John - FTh1B.5 Chang, Shih-Hui G. - FTh3D.4 Chang, You-Chia - LTh4I.1

Chang, Zenghu - LW1H.3, JTu5G, LW5H

Charalambidis, Dimitris - JTu4E.2 Charlton, Phillip - FTh4G.3 Chaudhary, Veena - FTu2B.3 Chaudhuri, Romita - FTh3G.7 Chavez Boggio, Jose M. - FW5D.4 Chekalin, Sergey V. - FTh3D.8 Chelvam, Venkatesh - FM4F.1 Chen, Chien-Yue - JW3A.25 Chen, Ching-Fu - FTh4E.2 Chen, Edward H. - FTu1A.2 Chen, Hao Ming - JW3A.29 Chen, Hou-tong - JW3A.34 Chen, Hsuan-Yin - JTu3A.25, JW3A.6 Chen, Jinbao - FTu5A.5, JTu3A.39 Chen, Li - FTu1D.3 Chen, Li-Jin - FW5D.2 Chen, Long - FTu1E.7 Chen, Ming-Chang - LTu2H, LW1H.1 Chen, Qin - FTh1D.5, FTh4E.6 Chen, Ray T. - FTu1D.4, FW1B.2, FW5B.4, FW2B, FW2B Chen, Shichao - FW4G.3 Chen, Shih-Hung - FW5E.5 Chen, Steven - FM4B.3 Chen, Sung-Liang - LTh4I.1 Chen, Szu-Yu - FW4G.2, JW3A.17 Chen, Ting-Wei - FW5C.4 Chen, Ye - FTu2F.1 Chen, Ying - JTu3A.8 Chen, Yu Lim - JW3A.29 Chen, Yu-Cheng - FW5C.8 Chen, Zhelun - FTu5D.6 Chen, Zhigang - FTu2E.2 Chen, Zhijiang - FM3A.5 Chen, Zhongping - FM4F.6, FTu2F Cheng, Szu-Cheng - FW5C.4 Cheng, Tonglei - JTu3A.35, JTu3A.36, JW3A.21 Cheng, Xiaojun - FTh1C.2 Cheng, Xinru - LTh11.4 Cheng, Yi-Bing - FW4A.4 Cherif, Rim - FM3B.6, FW1D.3 Chhetri, Raghav - FTu5F.2 Chiles, Jeffrey - FW1A.1 Chini, Michael - FTh1F.1, LM4G.4 Chipman, Russell A. - FM4D.1 Chng, Xiong Kai Benjamin - FTh4D.5 Choi, Gyu Jin - JW3A.4 Choi, Jong-rvul - FW4G.7

Choma, Michael - FTu5C.1, FW2G.2, FW4G.5 Chong, Andy - FTh1A.6, FTu5A.6 Chong, Yidong - FTu2E.5 Choo, Hyuck - LTh1H.5 Chou, Che-Min - JTu3A.25 Chow, Wing Chung Theodore -FW5F.4 Chowdhury, Bilas - FTh3B.3, FTh4B.3, JTu3A.37 Christ, Andreas - LTu5I.2 Christodoulides, Demetrios N. -FTu2E.1, FTu2E.3, FTu5D.2, LTh4I.2, FTh1D Christou, Julian C. - JW3A.8 Chu, Hong Son - FTh3E.6 Chu, Sai - FTu2A.2 Chung, Te-Yuan - FTh3C.8 Churin, Dmitriy - FTh1A.1, JTu3A.20 Cicak, Katarina - LTu2I.3 Cilingiroqlu, Berkin T. - FTu1G.2 Cipparrone, Gabriella - FTu2G.5 Ciraci, Cristian - FM4B.5, FTh4E.1 Clarkson, Eric - FW1E.5 Cleary, Justin - FTu1E.5 Clerici, Matteo - FTu2A.2, LTh3H.1 Coddington, Ian R. - FW5G.4, FW5G Coen, Stephane - FM4C.1 Cohen, Oren - LW5H.5 Coillet, Aurélien- FM4B.4 Cojocaru, Gabriel - LW11.5 Coletta, Nancy J. - FW4F.2 Collette, Marc - JTu3A.29 Cookson, Christopher - FW5F.4 Cooper, Merlin - LTh11.5 Cordero, Raul R. - FTh3G.2 Cormode, D. - LTu4I.3, LTu4I.4 Cornish, Simon - LM4H.4 Correia, Ricardo R. - FW5C.7 Corzo, Neil V - FTh1B.3, FW1C.3 Coscetta, Agnese - FTu2B.4 Cossel, Kevin C. - LW5I.3 Costa, Lino - FTh4G.4 Cotlet, Mircea - FTu1A.2 Cottat, Maximilien - LTh4H.4 Cottrell, Don M. - FM3D.3, FTu4C.2 Couairon, Arnaud - LTh3H.1 Couperus, Jurjen - FTu4G.2 Courrol, Lilia C. - JW3A.13 Cowan, Tom - FTu4G.2 Cox, Jonathan - FW4B.3

Creath, Katherine - FW1E.1 Cross, Robert M. - FTu1G.6 Cryan, Martin - FTh3D.1 Cundiff, Steven T. - LM3G.3 Curtis, Christopher - FTh1D.3 Cvijetic, Milorad - FTh3B.6 Cvijetic, Neda - FTh1B.5

D

Dahlberg, Peter - LM4G.2 Dal Negro, Luca - FTh1C.1 D'Ambrosio, Vincenzo - FTu4A.2 D'Andrea, Cristiano - LTh4H.4 Daniels, J. - FW4E.4 Dantus, Marcos - LW5I.1 Dascalu, Traian - LW1I.5 Dasi, Lakshmi P. - FTu1F.5 Datta, Animesh - FTu4A.6 Datta, Rupsa - JW3A.12 Davanco, Marcelo I. - FW4B.2, LW2I.1 David, Asaf - FTh3D.5 David, John A. - FW5C.8 Davis, Jeffrey A. - FM3D.3, FTu4C.2 Davis, Jon - FTu1C.3 Davis, Lloyd M. - FTh4G.4 de Araújo, Cid B. - FTu1C.6, JTu3A.41 de Bokx, Pieter - FTh3D.2 de Ceglia, Domenico - FW1B.6 De Leon, Israel - FTu2A.3 De Marco, Carmela - FW4A.7 de Oliveira, Tâmara P. - JW3A.39 de Riedmatten, Hugues - FW2C.1, FW1C de Rossi, Wagner - LTh4I.6 de Sterke, C. Martijn - FTh4E.7, LTu4H.2 De Vicente, Fabio S. - FW1A.7 Debus, Alexander - FTu4G.2 DeCorby, Ray - FW4B.4 Dehara, Kentaro - JTu3A.16 Delfyett, Peter - FTu1D.6, FTu1G.4, FTu2A.5 Delgado Atencio, Jose Alberto -FTu5E.3 Del'Haye, Pascal - FM4B.4 Delori, Francois C. - FW1F.2 Demircan, A. - LW4I.2 Deng, Dinghuan - JTu3A.33, JTu3A.35, JW3A.21 Dena, Hui - FTh4C.6, LW2I.2 Deng, Lu - FTh1A.4, FTh1A.5

Densmore, Victor E. - FTh3G.8 Dermosesian, Elian - FTh1E.1 DeSavage, Sara - FTu1C.3 Deutsch, Bradley M. - FTu4C.6 Devor, Anna - FW1E.4 Devore, Peter - FTu1D.1 Dewhirst, Mark - FM3F.1 Dholakia, Kishan - FTh1A.8, FTh3G.5, FTu1A.6 Di Fabrizio, Enzo - LTh4H.4 Di Giuseppe, Giovanni - FTu4A.7 Di Maio, Caterina - FTu2B.4 Di Pasquale, Fabrizio - FTu4B.5, FTu2B Diaz, Carlos - FTh4G.7 Diddams, Scott A. - FM4B.4 Diels, Jean-Claude M. - LTh3H.3, LW11 Digaum, Jenefir - FW1A.1 DiGiovanni, David - FTh3B.1 Digonnet, Michel J. - FTu5B.1, FTu4B DiMauro, Louis F. - LW5H.1 Dinca, Mihai - LW1I.5 Distante, Cosimo - FTu5E.2 Ditmire, Todd . - FTh1F.3 Divliansky, Ivan - FTh4G.5 Djordjevic, Ivan B. - FTh3B.2 Dobbs, Jessica - FTu2F.4, FTu4F.6 Dobson, Howard - FW5F.4 Doh, lyll-Joon - FTh1E.6 Dolev, Shimon - FTh3D.5 Dolgaleva, Ksenia - FW1B.5 Dolinar, Samuel - FTh3B.7 Dollar, Franklin - LW1H.1 Donaldson, William R. - FTu2G.1 Donati, Gaia - FTu4A.6 Donato, Maria Grazia - FTu2G.5 Donatti, Dario A. - FW1A.7 Dong, Jian-Wen - JW3A.10 Donoso, Ramiro - FM3D.3 D'Orazio, Antonella - FW1B.6 Dorronsoro, Carlos - JW3A.37 Dossou, Kokou - LTu4H.2 Dou, Yiling - FTh3C.5, FTu2E.4 Dowling, Jonathan P. - FW4C.7 Downer, Michael C. - FW4E.3 Dragnea, Bogdan - LW5I.2, LTh3I Drexler, Wolfgang - FW1F.3, FW5F Drobot, Brian - FW4B.4 Du, Long-Chi - FTh3C.8 Duan, Xiaoman - JW3A.26

Duan, Zhongchao - JTu3A.36 Dubé, Pierre - FW5C.2 Dubietis, Audrius - LTh3H.1 Duffus, Benjamin - FW5C.1 Duka, Piotr - JW3A.28 Dumon, Pieter - FM4A.2 Durach, Maxim - FTh3E.3 Durand, Magali - FTh1F.1 Dutton, Zachary - LTh1I.6 Dwyer, Sheila E. - LM4G.1

Е

Echevarria, L. - JTu3A.19 Economou, Sophia E. - LW4H.2 Eden, Gary J. - FTu5D.5, JTu3A.13 Edwards, Christopher A. - FTu4C.5, FW2A.3 Eftekhar, Ali A. - FTh4C.5 Eggleton, Benjamin J. - FM4A.5 Equchi, Akira - JW3A.14 Eilers, Hergen - FTh3C.6, FTh3C.7 Eisenmann, Shmuel - FTu4G.4 Eisenstein, Gadi - FTu4B.6 Eisermann, Rene - FW5D.4 Eldar, Yonina C. - FTh1C.5 El-Ganainy, Ramy - FTu2E.3 Elhalawany, Ahmed - FTh4C.3 Eliezer, Yaniv - FTu1G.3 Ellis-Monaghan, John - FM3A.3, FM3A.4 Elser, Dominique - LW2H.3 Elsner, Ann E. - FW5F.3, FW3F Emani, Naresh - FM4B.5 Emptage, Laura - FW5F.4 Enami, Yasufumi - FW5B.5 Enaya, Rayan - FTh3B.3, JTu3A.37 Engel, Gregory S. - LM4G.2 Engels, Peter - LM3H.3, LM4H England, Duncan G. - LTh11.2 Englund, Dirk - FTu1A.2 Ensley, Trenton R. - FTu1G.5 Erickson, Stephen - LTh4I.8 Erkintalo, Miro J. - FM4C.1 Ermolov, Alexey - FM4C.6 Esarey, E. - FW4E.4 Escobar Mejia, Andres F. - JTu3A.1 Esfahani, Nima N. - LW1G.4, LW1G.5 Esposito, Simone - JW3A.8 Estudillo-Ayala, Julian M. - JTu3A.38 Etxebarria, Jesus - FTh4C.7

Evans, Philip G. - FTh4C.2 Everitt, Henry - LTu4I.3, LTu4I.4

F

Faccio, Daniele - FTu2G.4, LTh3H.1 Faist, Jerome - FTu1E.1 Falcão-Filho, Edilson L. - FTu1C.6 Falldorf, Claas - FTh4G.2 Fancher, Charles - LTh11.7 Fang, Jugiang - FW4A.6 Fang, Po-Sheng - JW3A.6 Fang, Renpeng - JTu3A.27 Fanjul-Velez, Felix - FTu2F.6, FTu4F.1 Farahi, Salma - FTh1G.7 Faraon, Andrei - LW1G.2 Fathipour, Vala - FW2A.4 Fathpour, Sasan - FW1A.1 Faure, Jerome - FW4E.2 Fazio, Barbara - LTh4H.4 Fedosejevs, Robert - FM3A.5 Fedrizzi, Alessandro - FW5C.1 Fejer, Martin M. - FW2C.2 Felli, Alex - JW3A.7 Feng, Liang - FM4A.4 Feng, Wei - FW4C.7 Ferraro, Pietro - FTh1E.4, FTh1E.5, FTu4C.7, FTu5E.2, FW2G.1 Ferraro, Pietro - FW2G Ferreira, Marco - JTu3A.19 Ferreira, Paulo - FW1A.7 Ferrera, Marcello - FTu2A.2 Ferrevrol, Franck - FW4C.1 Fetter, Alexander - LM3H.2 Fidler, Andrew - LM4G.2 Fienup, James R. - FTu2C.1, FTu2C.2 Filip, Radim - FTu4A.3, FW4C.2 Fini, John - FTh3B.1 Finizio, Andrea - FTh1E.4, FTu5E.2 Fischer, Kevin - LTh1H.2 Fischer, Martin C. - LTh4H.3 Fischer, Stefan - FTh1G.6 Fisher, Caitlin - FTh4E.7 Fitzpatrick, Casey - FM4E.2 Fleicher, Avner - LW5H.5 Fleischer, Jason W. - FM4E.3, FTu2C.3, FM4E Fleisher, Adam J. - LW5I.3 Flynn, Richard A. - FTh1G.2 Fokina, Irina N. - FTu2A.4 Folcia, Cesar - FTh4C.7

Fontaine, Nicolas K. - FTh4B.1, FTu4D.2, FTu5D Forbes, Andrew - FTu1C.1, FM3D, FW1A Ford, George - FTh3F.4 Ford, Joseph E. - FTh1G.4 Foti, Antonino - LTh4H.4 Foursa, Dmitri - FTh1B.6, FTh4B Fraine, Andrew - FM4E.2, FTu1A.3 Freeman, Christopher L. - FTu4C.2 Fremberg, Tino - FW5D.4 Friberg, Ari Tapio - FTh4D.1 Frosz, Michael - FM4C.6 Fu, Jiavin - FTu1E.3 Fujimoto, Kazuya - JTu3A.17 Fukuchi, Kiyoshi - FM3A.2 Fukushima, Takehiro . - JW3A.31 Furesz, Gabor - FW5D.2 Furusawa, Akira - FTu4A.3, FW2C.3, FW4C.2, FW4C.3 Fuwa, Maria - FTu4A.3, FW2C.3

G

Gaathon, Ophir - FTu1A.2 Gaeta, Alexander L. - FM4B.1, FM3B Gagné, Mathieu - FW4D.1 Gagnon, Etienne - FTh4C.4 Gagnon, Louis - FW1E.4 Gaind, Vaibhay - FM4F.1 Gaiser, Hillary - FW3F.2 Galli, Matteo - FW1B.3 Galloway, Ben - LW1H.1 Galopin, E. - FM3B.3 Galvanauskas, Almantas - FTh3A.2 Galvez, Enrique J. - JW3A.24, LTh1I.4 Galvin, Tom - FTu5D.5 Gammon, Dan - LW4H.2 Gan, Choon How - FTh3D.1, FTu1E.1 Gao, Feng - FTh4A.5 Gao, Weiging - JTu3A.33, JW3A.21 Gao, Zeliang - JTu3A.9 García, Alejandro - FW2B.6 García, Luis A. - FW2B.5, FW2B.6, FW4D.2 Garcia Lechuga, Mario - JTu3A.2 Garcia-Juarez, Alejandro - FW2B.5, FW4D.2 García-Munoz, Enrique - FM3B.4 Garcia-Vidal, Francisco J. - FTh3E.2, FTh4E Gardiner, John - LTh41.8

Gardner, Dennis - LW1H.4 Gardner, Eric - FM4D.2 Gariepy, Genevieve - FTu2G.4, FW4C.4 Garrity, Deborah M. - FTu1F.5 Gartia, Manas - FTu5D.5 Gauthier, Daniel - FM4E.4 Gauvin, Serge - JTu3A.29 Gaylord, Thomas K. - FW1A.3, FW1A.4, FW1A.6, FW2G.3 Gbur, Gregory J. - FTu2G.6, FTu5C.2 Ge, Li - FTu1G.7, LTh4I.3 Ge, Tao - FW5A.4 Geddes, Cameron G. - FW4E.4 Gehl, Michael R. - LW1G.4, LW1G.5, LTh1H Gehm, Michael - FM3E Geiseler, Henning - JTu3A.7 Genack, Azriel Z. - FTh1C.2, FTh3C.2 Gennari, Oriella - FTh1E.4 Genov, Dentcho - FTu5D.1 Gentry, Cale M. - FTu5D.3 Genty, Goëry - LTh3H.1, FM3C Georgakoudi, Irene - FTu5E.1 George, Matthew C. - FM4D.2 George, Steven C. - JW3A.12 Gerace, Dario - FW1B.3 Ghatrehsamani, Sajad - FM4D.4, FW5B.6 Ghoobadi, Farid - FTu1A.4 Ghosh, Rupamanjari - FTu5C.4 Gibbs, Hyatt M. - LTu4I.1 Gibson, Ricky D. - LW1G.4, LW1G.5, LW2I Gill, Douglas - FM3A.4 Ginis, Vincent - FTh1D.4 Gjonaj, Bergin - FTh3D.5 Glasgow, Scott - LTh4I.8 Glebov, Leonid - FTh4G.5 Glenday, Alexander G. - FW5D.2 Gmitro, Arthur F. - FW2G.4 Goddard, Lynford - FTu4C.5, FW2A.3 Godínez, Alicia M. - FTu5E.3 Goldberg, Bennett B. - FTu1G.2 Golde, Daniel - LTu4I.2 Goldfarb, Fabienne - FTu5C.3, FTu5C.4 Goldstein, Goldie - FW1E.1 Goldstein, Jordan - FTu1A.2 Golla, Dh. - LTu4I.3 Golla, Dheerai - LTu4I.4

Golubev, Timofey - FTh1C.6 Gómez Colín, María del Rocío -FW4D 2 Gómez Fuentes, Roberto - FW4D.2 Gong, Zheng - FM4C.2, FM4C.3, FM4C.4, FW4G.4 Gonsalves, A. J. - FW4E.4 Gonzalez-Ballestero, Carlos - FTh3E.2 Goodfellow, Kenneth M. - FW2B.1 Gordon, Michael - FTu4F.7 Gordon, Reuven - FTh1E.7 Goulielmakis, Eleftherios - FTh3A.3 Gowda, Ashok - FTu4F.3 Gräfe, Markus - FTu2D.1 Grande, Marco - FW1B.6 Grant, Ben - FTu4F.6 Gratton, Enrico - JW3A.12 Graziano, Arthur - FTh4G.3 Green, Jason G. - FW5F.3 Green, Will - FM3A.3, FM3A.4 Grigore, Oana - LW11.5 Grimsmo, Arne - FTu5A.1 Gromov, Dmitry - FTu1E.6 Gruev, Viktor - FW2E.2 Grüner, Florian - FTu4G.1 Gruppetta, Steve - JTu3A.24 Grutter, Karen - FW4B.2 Grychtol, Patrik - LW5H.5 Gu, Baijie - FW5C.3 Gu, Min - FTu2F.1, FW2A.1, FW2B.2, FW4A.4 Gu, Wanyi - JW3A.23 Gu, Xun - JTu4E.2 Guang, Zhe - FTh4A.2 Gucciardi, Pietro G. - FTu2G.5, ITh4H 4 Guerra, Juan C. - JW3A.8 Guggenmos, Alexander - FTh1G.6 Gullikson, Eric - FTh1G.6 Gunawidjaja, Ray - FTh3C.6, FTh3C.7 Guo, Chen - JTu4E.3 Guo, Hong - FTh4E.4 Guo, Junpeng - FTh4E.4, JW3A.34 Guo, L. Jay - FTu1E.7, LTh4I.1 Guo, Shaofeng - FTu5A.5, JTu3A.39 Gupta, Banshi D. - FTu4B.6, FTu5B.3, FTu2B.3 Gwaq, Jin Seog - JW3A.4 Gyongyosi, Laszlo - JTu3A.26

Key To Auth<u>ors</u>

H Hache, Alain - FTh3D.6, FW2B.3 Hadad, Yaron - FTh3F.2 Hadas, Itai - JTu4E.4 Haddad, Laith H. - LM4H.3 Haddadpour, Ali - FTh3D.3 Hader, Joerg - LM3G.2, LW1I.3 Haeggström, Edward - FW5A.2 Haensch, Wilfried - FM3A.3, FM3A.4, FM4A.1

Hagan, David J. - FTu1G.5 Hagley, Edward W. - FTh1A.5 Hall, David - LM4H.2, LTu1H Hall, Michael W. - FW4C.1 Hammond, Richard - FTh1F Han, Bin - FTu2E.4 Hänsch, Theodor - FW5G.2 Hanulia, Taras - JW3A.2 Hao, Jianzhong - FTu4B.2 Harari, Gal - LM4G.3 Harayama, Takahisa - JW3A.31 Harder, Georg - LTu51.2 Hart, Michael - FTu2C.5 Hartemann, Frederic V. - FTh1F.4 Harth, Anne - JTu4E.3 Hartig, Kyle - LTh4H.1 Hartz, Alex - LW1G.2 Harutyunyan, Hayk - FTu1E.8 Harvey, James E. - FW5A.6 Hashemi Rafsanjani, Seyed

Mohammad - FM4E.5 Hashimoto, Tyler - JW3A.7 Hashimoto, Yosuke - FW4C.3 Hatakeyama, Taiki - FM4A.4 Hatch, Kenneth - FTu4F.7 Haus, Joseph W. - FTu1E.6, LTh1I.1 Hausmann, Katharina - FTh4A.1 Hayenga, William - FTh4C.3 Hayford, Don - FTu2D.2 Haynes, Roger - FW5D.4 He, Ran - FW3F.2 He, Zhaohan - FW4E.2 Healy, Noel - FW1D.5 Heigoldt, Matthias - FTu4G.1 Heilmann, Rene - FTu2D.1 Heinrich, Matthias - FTu2E.1, FTu2E.3, FTu5D.2, LTh4I.2 Hellberg, Carl S. - LW2I.1 Helml, Wolfram - JTu4E.2 Helt, Luke G. - FTu2D.3 Henderson, Robert - FTu2G.4

FTu1E.5, JW3A.34, LW1G.4, LW1G.5, LTh4I, LW1G Hennessy, Tara - FTu5B.2 Herbst, Tom - JW3A.8 Hernandez, Florencio E. - FTh4G.7 Hernandez, J. - FTu2G.5 Hernandez-Garcia, Carlos - JTu5G.3, LW5H.6, LW1H.1 Hernandez-Garcia, Juan Carlos -JTu3A.38 Hernandez-Rueda, Javier - JTu3A.2 Herne, Catherine - FTu1F.3 Herrera, Oscar D. - FW4B.5 Herzig Sheinfux, Hanan - LM4G.3 Heuer, Axel - LW2I.6 Heyl, Christoph - JTu4E.3, JTu5G.4 Hevlman, Christopher - JW3A.12 Hiebert, Wayne K. - FM3A.5 Hilario, Paul Leonard Atchong C. -FTu4C.3 Hilden, Timo - FW5A.2 Hill, David - FTu5F.2 Hill, John - JW3A.8 Hill, Tyler - FTh4C.6 Hillenbrand, Rainer - FTu4C.6 Himmel, Brandon - FTh1D.3 Himmelhuber, Roland - FW4B.5 Hino, Tomoyuki - FM3A.2 Hinz, Phil - JW3A.8 Hirano, Masaaki - FTh1B.1, FTu1B Ho, Joseph - FW4C.1 Hoang, Thang B. - FTh4E.1 Hodaei, Hossein - FTu2E.1, FTu5D.2, LTh4I.2 Hofling, Sven - LW21.2 Hofmeister, William H. - FTh4G.4 Hohenleutner, Matthias - LTu4I.2 Holland, Murray - LM3H.4 Hommelhoff, Peter - FW5E.3 Hong, Keehoon - FTh4G.1 Hopkins, Ben - FW4A.3 Hosseini, Amir - FTu1D.4, FW5B.4 Hou, Bixue - FTh1F.2 Howell, John C. - FM4E.1 Howlett, Isela D. - FTu4F.7 Hsieh, Chang-Yu - FTh3E.6 Hsieh, Wen Ting - JW3A.29 Hsieh, Wen-Feng - FW5C.4 Hsieh, Yu-Hua - FTh3C.8 Hu, Guangwei - FTu1E.2

Hendrickson, Joshua - FTu1D.5,

Hu, Guoging - FM4C.2, FM4C.3, FM4C.4 Hua, Hong - FTh1G.1 Huang, Chen-Bin - FTh4E.2 Huang, Hao - FTh3B.4, FTh3B.7, FTh4B.6 Huang, Hung Ji - JW3A.29 Huang, Jinxin - FW1E.5 Huang, Ligang - FTh4A.5 Huang, Ningfeng - FTu1F.2 Huang, Pei-Chi - LW1H.1 Huang, Shu-Wei - LTh1H.3 Huang, Xue - FW2G.2 Huang, Yuping - FM4B.2, FTh1B.3, FTu4A.4, FW1C.3, FTu5A Huang, Zhihe - JTu3A.39 Huang, Zun - FTh1D.6 Huber, Rupert - LTu41.2 Hulsken, Bas - FM4F.5 Humayun, Mark S. - FTu5F.1, JW3A.38 Hurwitz, Elisa - FTu2G.6 Huttner, Ulrich - LTu4I.2 Hyrka, Yurii - JW3A.30 I lannone, Maria - FTu5E.2 lati, Maria Antonia - FTu2G.5

lannone, Maria - FTu5E.2 lati, Maria Antonia - FTu2G.5 Ibarra-Escamilla, Baldemar - JTu3A.38 Ibsen, Morten - FW5D lizuki, Hideo - JW3A.11 Improso, Wynn Dunn Gil - FTu4C.3 Inoue, Junichi - FW4B.6 Irman, Arie - FTu4G.2 Isaza, Cesar - FTu2B.2 Ishii, Nobuhisa - JTu3A.7 Istfan, Raeef - FM3F.2 Itatani, Jiro - JTu3A.7 Ito, Kota - JW3A.11 Iturbe, David - JW3A.27 Ivory, Megan K. - LTh1I.7 Iwamoto, S. - LTu4H.1

Л

Jachura, Michal - LTu5I.3 Jackson, Stuart D. - FW1D.1, FW2D Jacob, Gregory - JTu3A.22 Jahanshahi, Peyman - FTh1E.1 Jahnke, Frank - LTu1I.4 Jalali, Bahram - FTu1D.1 Jameson, Andrew D. - LTu4I.1 Jang. Hoon - FW5B.3

Jang, Sung - FW2A.4 Jaquay, Eric - FTu1F.2 Jarecki, Robert - FW4B.3 Jaron-Becker, Agnieszka A. - JTu5G.3, IW1H 1 Jarrahi, Mona - FTh3E.5 Javidi, Bahram - FTu4C.7 Jayaswal, Gaurav - FW1C.6, FW1C.7 Jechow, Andreas - LW2I.6 Jen, Alex - FTu1D.4, FW5B.4, FW5B.5 Jenkins, Micah - FW2G.3 Jeong, Young-Gyun - LW2I.5 Jessen, Poul S. - JS1A.2 Jestin, Yoann - FTu2A.2 Jewel, Md. Atikur R. - JW3A.40 Jha, Pankaj K. - FW5C.6 Jhajj, Nihal - LW4I.1 Ji, Wen Bin - FTu4B.2 Jia, Baohua - FW2B.2 Jiang, I Da - JW3A.29 Jiang, Kebei - FW4C.7 Jiang, Liang - FTu1A.1, FTu2A Jin, Cheng - LW1H.2 Jin, Lin - FTh4E.6 Jin, Xian Min - FTu4A.6 Joannopoulos, John - FTh4A.3 Jochmann, Axel - FTu4G.2 John, Joseph - JTu3A.40 Johnson, Adam R. - FTh1G.4 Johnson, Brennan M. - FTu1F.5 Johnson, Lee - JW3A.7 Johnson, Steven - FTh4A.3 Johnsson, Per - JTu4E.3 Jones, R. Jason - FTh1A.2, FW5G.1, JTu3A.14, JTu3A.22 Jota, Thiago - JW3A.15 Jouane, Youssef - FW5B.5 Jovanovic, Igor - FTu1G.1, FW5E.5, LTh4H.1, FTu2G, FTu4G, FTh3A Junior, José - FTu2F.2 K, Nithyanandan - FW4D.7

κ

Kaertner, Franz - FTh3A.1, FW5D.2 Kagalwala, Kumel - FTu4A.7 Kaim, Sergiy - FTh4G.5 Kajumba, Nathaniel - FTu4G.1 Kalinski, Matt . - JTu3A.4 Kalra, Yogita - JW3A.32 Kamau, Edwin N. - FTh4G.2 Kamide, K. - LTu4H.1

Kaminer, Ido - FW5E.4, LM4G.3 Kamlapurkar, Swetha - FM3A.4 Kamp, Martin - LW2I.2 Kanai, Teruto - JTu3A.7 Kandel, Saugat - LM4H.2 Kaneshima, Keisuke - JTu3A.7 Kanou, Yasuhire - JTu3A.35 Kanter, Gregory S. - FTh1B.3 Kaplan, Alexander E. - FTh4A.7 Kapteyn, Henry C. - JTu5G.3, LW1H.1, LW1H.4, LW5H.5 Karadzhinova, Aneliya - FW5A.2 Karimi, Ebrahim - FTu2A.3 Karnadi, Indra - FW5B.3 Karpinski, Michal - FW2C.5, LTh11.5, LTu5I.3 Karsch, Stefan - FTu4G.1 Kashiwagi, Ken - FM3C.2, FM3C.3, FTh1B.4 Kashyap, Raman - FW4D.1 Kasparian, Jerome - LW4I.3 Kassamakov, Ivan - FW5A.2 Katsushi, Iwashita - JW3A.22 Katyba, Gleb M. - FTu2A.4 Keenan, Molly - FTu4F.5 Keene, David - FTh3E.3 Keevend, Kerda - FTu5F.5 Keiffer, Patrick - LW1G.4, LW1G.5 Kelaita, Yousif - LTh1H.2 Keller, Ursula - LM3G.1 Kemiktarak, Utku - LTh1H.4 Kenzo, Makino - FW4C.3 Kepinska, Miroslawa - JW3A.28 Kfir, Ofer - LW5H.5 Khajavikhan, Mercedeh - FTh4C.3, FTu2E.1, FTu5D.2, LTh4I.2 Khaleque, Tanzina - FM3D.4 Khater, Marwan - FM3A.3, FM3A.4 Khitrova, Galina - LTu4I.1, LW1G.4, LW1G.5 Khrennikov, Konstantin - FTu4G.1 Khurgin, Jacob - FTh1D.1, FTh3E Khurram, Aliza - FTh4C.8 Kienberger, Reinhard - JTu4E.2 Kieu, Khanh Q. - FTh1A.1, FTu4F.4, JTu3A.20 Kiewra, Ed - FM3A.3, FM3A.4 Kik, Pieter G. - JTu3A.8 Kildishev, Alexander - FM4B.5,

FTu2G.2

Kilen, Isak - LM3G.2

Kim, Chul Soo - LW4H.2 Kim, Daesuk - FW5A.5 Kim, Dai-Sik - LW2I.5 Kim, Donghyun - FW4G.7, JW3A.18 Kim, Geon-Hee - FTh3G.8 Kim, Huisung - FTh1E.6, FTu5F.4 Kim, Jeongmin - FW4G.1, FW5C.6 Kim, Jonghwan - LTu4H.3 Kim, Ju Young - FW5B.3 Kim, Jungsang - FTu1A.1 Kim, Ki Soo - FW5B.3 Kim, Ki-Yong - LW1I.4 Kim, Kyujung - FW4G.7, JW3A.18, JW3A.3 Kim, Kyung-Jo - FW4B.5 Kim, May E. - JTu3A.27 Kim, Mijin - LW4H.2 Kim, Minseok - FW5E.2 Kim, Sangsik - FTu4D.5 Kim, Seonghoon - LW2I.2 Kim, Seung-Hyun - LW2I.5 Kim, Youngsik - FTh3G.8, JW3A.15, JW3A.7 Kimbrell, Hillary - FW1E.2 Kimerling, Lionel C. - FTh1E.3, FTu4D.3, FTu4D.4, JW3A.26 Kindem, Jonathan - LW1G.2 King, Galen B. - FTh1E.6, FTu5F.4 Kintaka, Kenii - FW4B.6 Kira, Mackillo - LM3G.4, LTu1I.1, LTu4I.1, LTu4I.2, LTu4I Kivshar, Yuri S. - FTh1D.2, FW4A.3 Klee, Anthony - FTu1G.4 Kleineberg, Ulf - FTh1G.6 Knoll, Dieter - FW4B, FW5B.2 Knox, Wayne H. - FM3C.5 Knut, Ronny - LW5H.5 Kobayashi, Takayoshi - LW5H.3 Koch, Stephan W. - JS1A.6, LM3G.2, LTu4I.1, LTu4I.2, LW1I.3, LM3G Koch, Thomas L. - FTu4D.1, JS1A Kocsis, Sacha - FW4C.1 Koh, Eun-Sohl - LW5I.2 Koh, Wee Shing - FTh3E.6 Koirala, Milan - FTh3C.4 Kolesik, Miroslav - LTh3H.1, LTh3H.4 Kolmychek, Irina - FTh1D.2 Kompanets, Viktor O. - FTh3D.8 Kondakci, Hasan E. - FTh1C.3 Kondo, Tomohiro - FW4B.6

Kondratenko, Serhiy - JTu3A.34, JW3A.30 Kong, Lingjun - FTu1C.5 Konijnenberg, Sander - FW2A.2 Koshel, John - FTh1G, FTh3G, FTu2C, FW4A Kostuk, Raymond K. - FTu4F.7 Kotani, Takayuki - FM3C.3 Kottos, Tsampikos - FTh3C.4 Kou, Junlong - LTh1H.5 Kovalova, Marianna - JTu3A.34 Kowligy, Abijith S. - FM4B.2 Kozawa, Yuichi - FM3D.2 Kracht, Dietmar - FTh4A.1 Krapf, Diego - FTu1F.5 Krauss, Thomas F. - FW1B.1 Krausz, Ferenc - FTh1G.6, JTu4E.2 Krishnamurthy, Savitri - FTu2F.4, FTu4F.6 Krstajic, Nikola - FTu2G.4 Kruk, Sergey - FTh1D.2 Krushelnick, Karl - FTh1F.2, FW4E.2 Ku, Chen-Ta - FTh4E.2 Kuebler, Stephen M. - FTh4G.7, FW1A.1 Kuerer, Henry - FTu2F.4 Kumar, Ajay - JW3A.20 Kumar, Ajeet - FW1D.4 Kumar, Nitish - FW2A.2 Kumar, Prem - FM4B.2, FTh1B.3, FTu4A.4, FW1C.3 Kumar, Santosh - FTu5C.4, JW3A.20 Kung, Andy - LW1H Kuo, Li Chung - JW3A.29 Kuppinski, Matthew - FW1E.5 Kurimura, Sunao - FW1C.4 Kurokawa, Takashi - FM3C.2, FM3C.3 Kurz, Heinrich - FTu1D.2, FTu2D Kuzin, Evgene - JTu3A.38 Kuznetsova, Lyuba - FTh1D.3 Kwok, Dolaphine - JW3A.15 Kwok, Sen - FTh1E.3 Kwon, Kyungmook - FW1A.5 Kwong, N. - FM3B.3, FW5C.3, LTu4I.3, LTu4I.4 Kyrish, Matthew - FTu4F.6 L

Labbe, Fernando - FTh3G.2 Labidi, Tarek - FTu5C.4 Lagoudakis, Konstantinos - LTh1H.2

Lagutchev, Alexei - FM4B.5 Lahiri, Mayukh - FTu1C.2 Lai, Yiming - FW1B.3 Lallier, Eric - FTh3A.4 Lambin lezzi, Victor - FTu4B.4 Lamy de La Chapelle, Marc - LTh4H.4 Lancaster, David - FW1D Lange, Christoph - LTu4I.2 Langellier, Nicholas - FW5D.2 Langer, Fabian - LTu4I.2 Langrock, Carsten - FW2C.2 Lantigua, Christopher - FTh4C.3 La-o-vorakiat, Chan - LW5H.5 Larat, Christian - FTh3A.4 Larikova, Julia - FTu4A.4 Larkin, Alexander - JTu3A.23 Larsen, Esben W. - JTu4E.3, JTu5G.4 Lassen, Mikael - LTh4H.2 Lassonde, Philippe - JTu5G.1 Lau, Hon Wai - LTh11.6, FTu1A.4 Lauhakangas, Rauno - FW5A.2 Lausten, Rune - LTh1I.2 Lavery, Martin - FM4E.4, FTh3B.7, FTh4B.6, FTh3B.4 Lavine, Barry K. - LTh3I.4 Lavrentovich, Oleg D. - FTh4B.4 Lawall, John - LTh1H.4 Lawrence, Felix - LTu4H.2 Lawrie, Benjamin - FW4C.5 Le, Anh Thu - LW1H.2 Leach, Jonathan - FTu2G.4, FW4C.4 Leaird, Daniel E. - FM4B.3, FW2C.2 Leal Cruz, Ana Lilia - FW2B.6, FW4D.2, FW2B.5 Lee, Byoungho - FTh4G.1, FTu1C, FTu4C Lee, Byounghwak - LTu4I.5 Lee, Chuck - JTu3A.25, JW3A.6 Lee, Jaejong - FW5A.5 Lee, Jeong Oen - FW1A.5 Lee, Kevin F. - FW5G.3 Lee, Kim Fook - FW1C.3 Lee, Kyu J. - FTh3D.7 Lee, Minjoo - FW2G.2 Lee, Seungwoo - FW5B.3, FW5E.2 Lee, Taehee - FW5E.2 Lee, Wonju - FW4G.7, JW3A.18 Lee, Yong-Hee - FW5B.3, LW1G.1, LTu4H Lee, Yun-Shik . - LTu4I.1, LTu4I.5, LW21.5

Leemans, W. P. - FW4E.4 Legare, Francois - LTh3H.1, JTu5G.1 Leger, James R. - FTh3G.3 Lehnert, Konrad - LTu2I.3 Leibovici, Matthieu C. - FW1A.4, FW1A.6 Leisner, Thomas - LW4I.3 Lemaitre, A. - FM3B.3 Lendel, Vasyl - JW3A.2 Leon, Miguel - FTh3G.2 Leone, Stephen R. - LTu2H.2 Leon-Saval, Sergio G. - FW5D.1 Leppänen, Lasse-Petteri - FTh4D.1 LeRoy, B. - LTu4I.3, LTu4I.4 Leuchs, Gerd - FM3B.4, FTu4C.1, LTh31.5, LTu21.2 Leung, Hui M. - FW2G.4 Leuna, P. - FM3B.3 Levy, Amir - LM4G.3 Lewandowski, P. - FM3B.3 L'Huillier, Anne - JTu4E.3, JTu5G.4 Li, Bing-xiang - FTh4B.4 Li, Chih-Hao - FW5D.2 Li, Chunyong - FTu2G.4 Li, Dan - FW2B.2 Li, Hebin - LM3G.3 Li, Jian - JW3A.23 Li, Long - FTh3B.7, FTh4B.6 Li, Luozhou - FTu1A.2 Li, Ming - FTh3B.6 Li, Peng - FM3D.5 Li, Penglei - FTu1E.1 Li, Pengxiong - JTu3A.28 Li, Tongcang - FW4G.1 Li, Wei - FTh4A.5, FW4G.4 Li, Wenhua - FTh4A.5 Li, Xiangping - FTu2F.1, FW2A.1, FW4A.4 Li, Yan - FTh3G.4 Li, Yang - FW4A.1 Li, Yongnan . - FTu1C.5 Li, Zheng - LTu2H.3 Li, Zhixiang - FTu5A.4 Liang, Guanguan - FTu2E.5 Liang, Rongguang - FW2A Liao, Chen-Ting - LTu2H.4 Liboiron-Ladouceur, Odile - FTu1B.4 Liew, Seng Fatt - FW5C.5, LTh4I.3 Lifschitz, Agustin - FW4E.2 Lim, Hwan H. - FW1C.4 Lim, Khan - FTh1F.1

Lima, Carlos P. - JW3A.39 Lima, Geralda C. - JW3A.39 Lin, Bo - FTu4B.2 Lin, Charles P. - FM3F.3 Lin, Che-Hsien - JW3A.25 Lin, Chi-Deng - JW3A.17 Lin, Chii Dong - LW1H.2 Lin. Di - FTh3G.3 Lin, Hao-Yu - FTh1E.3, FTu4D.3 Lin, Hong - FTh4C.8 Lin, King-Chuen . - LTh3I.2, LTu5H Lin, Lih Y. - FTu5F.3 Lin, Linhan - FTu1E.4 Lin, Ming-wei - FW5E.5 Lin, Pao-Tai - JW3A.26, FTu4D.3, FTh1E.3 Lin, Shiuan-Huei - FTh3C.8 Ling, Tao - LTh4I.1 Lipson, Michal - FM3B.2 Lischke, Stefan - FW5B.2 Little, Brent - FTu2A.2 Liu, Chuanhong - FTh4A.6 Liu, Dennis X. - FW1B.5 Liu, Hui - FTu5D.1 Liu, Jiansheng - FM4C.2, FM4C.4, FW4G.4 Liu, Kang - LW1I.2 Liu, Logan L. - FTu5D.5 Liu, Qiang - FTu1E.1 Liu, Ru-Shi - JW3A.29 Liu, Weiwei - FM3B.5 Liu, Xiang - FTu2C.4 Liu, Ya - FM4C.2, FM4C.3, FM4C.4, FW4G.4 Liu, Yang - FM4B.3 Liu, Yao-Li - FW5E.5 Liu, Yi - LTh3H.2 Liu, Zhe - FM3B.5 Lo, Eng H. - FW1E.4 Lobachinsky, Lilya - FTh4E.3 Loh, William - FM4B.4 Lollie, Michelle - FW4C.7 Loncar, Marko - LTu4H.4 Long, Phil D. - LM4G.2 Lopatynska, Olga - JW3A.2 Lopez, Cefe - FTh3C.1 Loranger, Sébastien - FW4D.1 Lorek, Eleonora - JTu4E.3, JTu5G.4 Loschenov, Victor - FTu5F.5 Losquin, Arthur - JTu4E.3 Louie, Steven G. - LW2I.4

Key To Authors

Louradour, Frederic - FW4D.5 Lovell, Gregory - FTh3B.3, FTh4B.3, JTu3A.37 Low, Philip - FM4F.1 Lowney, Joseph - LTu1H.4 Lu, Chien-Hung - FM4E.3, FTu2C.3 Lu, Jen-Tang - FTu2C.3 Lu, Ming - FTu1A.2 Lu, Peixiang - FM3B.5 Lu, Phat - JW3A.14, JW3A.9 Lü, Xinmina - FTu5A.5 Lu, Zhaolin - FTh4E.5 Lucas, Pierre - FW2D.3 Luecke, A. - FM3B.3 Luepke, Dakota S. - JW3A.15 Lugani, Jasleen - LTu5I.3 Luk, M. - FM3B.3 Lukens, Joseph M. - FW2C.2 Lukin, Mikhail - FTu1A.1 Lumeau, Julien - FTh4G.5 Luo, Jingdong - FTu1D.4, FW5B.4, FW5B.5 Luo, Ting - FTh1G.3 Luo, Yuan - FTu1F.1 Lutkenhaus, Norbert - FTu1A.1, LW2H.1 Luxmoore, Isaac - FTu1E.1 Lynn, Brittany - FTh1B.2 Lvtle, Amv L. - FTh4C.4

Μ

Lvtle, Christian - JTu3A.14

Ma, Jing - FTu1F.2 Ma, Zhenqiang (Jack) - FW5B.1 Machnev, Andrey - FTu1E.6 MacKenzie, Stuart - LTh3I.1, LW5I Madej, Alan - FW5C.2 Madsen, Lars S. - LTu5I.1 Mafi, Arash - FM4C.5 Magana Loaiza, Omar S. - FM4E.4, FM4E.5, FTh4A.4, FTu1G.6 Magazzu, Alessandro - FTu2G.5 Magnusson, Robert - FM3D.4, FTh3D.7 Mahamd Adikan, Faisal Rafig -FTh1E.1 Mahmoodian, Sahand - LTu4H.2 Maia, Francisco C. - LTh4I.6 Maier, Andreas - FTu4G.1 Mait, Joseph N. - FTh1G.2 Maitland, Kristen C. - FM4F.2, FTu5F

Majumdar, Arka - LTh1H.2, LTu4H.3 Majus, Donatas - LTh3H.1 Mak, Ka Fai - FM4C.6 Maksimchuk, Anatoly - FTh1F.2 Malik, Mehul - FM4E.4 Malmstadt, Noah - FTu1F.2 Mamonov, Evgeniy A. - FTh1D.2 Mancuso, Christopher - LW1H.1 Mandeng Mandeng, Lucien - FTh4B.5 Mandeville, Emiri T. - FW1E.4 Manoel, Diego S. - FW1A.7 Manschwetus, Bastian - JTu4E.3 Mansuripur, Masud - JS1A.3 Mantsvzov, Boris I. - FTh3D.8, JW3A.33 Manurkar, Paritosh - FTh1B.3 Mao, H. S. - FW4E.4 Marago, Onofrio M. - FTu2G.5, LTh4H.4 Marcassa, Luis G. - FTu2F.2 Marcos, Susana - FW4F.2, JW3A.37 Marcus, Gilad - JTu4E.2 Marek, Petr - FTu4A.3, FW4C.2 Markham, Matthew L. - FTu1A.2 Marks, Daniel L. - FTu2F.5 Marquardt, Christoph - LTu2I.2 Marques, Manuel J. - FTu2F.3 Marr, David W. M. - FTu1F.4 Marrucci, Lorenzo - FTu4A.2 Martin, Eric - LM3G.3 Martinez, Amalia - FTh3G.2 Martinez, G. - JTu3A.19 Martinez, Luis J. - FTu1F.2 Martínez Irivas, Beatriz A. - JW3A.27 Mathias, Stefan - LW5H.5 Matlis, N. H. - FW4E.4 Matsui, Takayuki - JW3A.11 Matsumoto, Hirokazu - FM3C.4 Matsumoto, Morio - JTu3A.35 Matthews, Mary - LW4I.3 Mauritsson, Johan - JTu4E.3, JTu5G.4 Maydykovskiy, Anton I. - FTh3D.8, JW3A.33 Maynard, Marie-Aude - FTu5C.3, FTu5C.4 Mazilu, Michael - FTh1A.8, FTh3G.5, FTu1A.6 Mazulquim, Daniel - FTh3D.7 Mazur, Eric - FW4A.1 Mazzulla, Alfredo - FTu2G.5

McCain, Scott T. - FTu2F.5

McGuire, Felicia - FTh4E.1 McIntosh, Ben - JW3A.38 McKinstrie, Colin J. - FTu4A.5 McLaughlin-Drubin, Margaret -FTu5E.1 McMillan, James F. - LTh1H.3 McPhedran, Ross C. - FTh4E.7 Meany, Thomas - FTu2D.3 Meahelli, Mounir - FM3A.3 Mehravar, Soroush - FTu4F.4 Mehta, Privanth - FW1D.5 Meier, Torsten - LTu4I.2 Mejia, Camilo A. - FTu1F.2 Melnikov, Igor V. - FTu1E.6, LTh11.1 Melnyk, Aaron D. - FW4B.4 Memmolo, Pasquale - FTh1E.4, FTu4C.7, FTu5E.2, FW2G.1 Mendez, Cleber R. - FW1A.7 Mendez, Marcela M. - JW3A.27 Mendez-Aller, Mario - FM3B.4 Meng, Cuiling - FTu1E.3 Menzel, Ralf - LW2I.6 Merano, Michele - FW1C.6, FW1C.7 Merola, Francesco - FTh1E.4, FTu5E.2, FW2G.1 Messina, Elena - LTh4H.4 Meystre, Pierre - FW1C.5 Miccio, Lisa - FTh1E.4, FTu5E.2, FW2G.1 Michel, Jurgen - FTu4D.4 Michler, Peter - LTu11.2 Midorikawa, Katsumi - LTu2H.1 Miguez, Maria L. - JTu3A.21 Mihney, Momchil T. - LTh4I.1 Mikkelsen, Maiken H. - FTh4E.1 Milchberg, Howard M. - LW4I.1 Miles, Alex - FTh1B.2 Milgram, Bill - FW5F.4 Milione, Giovanni - FM3D.6 Miller, Donald T. - FW5F.3 Miller, Douglas - JW3A.8 Milojkovic, Predrag - FTh1G.2 Milster, Tom - FTh3G.8, JW3A.14, JW3A.15, JW3A.7, JW3A.9 Min, Bumki - FW5B.3 Minaeva, Olga - FM4E.2, FTu1A.3 Minardo, Aldo - FTu2B.4 Minkov, Momchil - FW1B.3 Minot, Ethan D. - LTu4I.5 Miranda, Miguel - JTu4E.3

Mirhosseini, Mohammad - FM4E.4, FM4E.5, FTh4A.4, FTu1G.6 Miri, Mohammad-Ali - FTu2E.1, FTu2E.3, FTu5D.2, LTh4I.2 Mironov, Andrey - FTu1E.6, JTu3A.13 Miroshnichenko, Andrey E. - FW4A.3 Mishra, Akhilesh Kumar - FTu4B.6 Mishra, Satyendra K. - FTu2B.3, FTu4B.6, FTu5B.3 Misoguti, Lino - JTu3A.21 Mista, Ladislav - FTu4A.3 Mistewicz, Krystian - JTu3A.31, JW3A.28 Mistura, Giampaolo - FW1C.6, FW1C.7 Misumi, Takashi - JTu3A.35 Mitrokhin, Vladimir - FTu1E.6 Mittelberger, D. E. - FW4E.4 Mivamoto, Yoko - FM3D.2 Miyata, Kazunori - FW4C.2 Miyazono, Evan - LW1G.2 Mizuno, Yumiko - JTu3A.16 Mock, Jack J. - FTh4E.1 Modi, Rahul - FW3F.2 Moerner, W. E. - FM3E.2 Mohseni, Hooman - FW2A.4 Mokhov, Sergiy - FTh4G.5 Moloney, Jerome V. - LM3G.2, LW1I.3, LTh3H Monberg, Eric - FTh3B.1 Monjur, Mehjabin Sultana - FTh4G.6 Monro, Tanya M. - FW2D.1 Monroy, Idelfonso Tafur - FTu1B.3 Mookherjea, Shayan - FM3A, FM4A.3 Moore, Bruce - FW3F.2 Moore, Dustin - FTu2C.1, FTu2C.2 Moore, Hannah - LTu4H.2 Morales, Edgar - FTh1G.7 Morandotti, Roberto - FTu2A.2, LTh3H.1 Moreno, Esteban - FTh3E.2 Moreno, Ignacio - FM3D.3, FTu4C.2 Morishige, Naoyuki - FW1F.4 Morita, Ryuji - FM4D.3 Moser, Christophe - FTh1G.7 Mosk, Allard - FW5C.5 Moss, David - FTu2A.2 Motamedi, Massoud - FTu4F.3 Möttönen, Mikko - LM4H.2 Mouradian, Levon - FW4D.5 Mousavian, Ali - LTu4I.5

Mower, Jacob - FTu1A.2 Mrejen, Michael - FM4A.4, FW5C.6 Mu, Jianwei - JW3A.26 Muanenda, Yonas S. - FTu4B.5 Mueller, Jason - FM3D.1 Mueller, Kai - LTh1H.2 Mukhin, Ivan - JTu3A.12 Mukhtar, Musawwadah - FTu5C.4 Muller, Matthew - FW5F.3 Müller, Christian R. - LTu2I.2 Munger, Karl - FTu5E.1 Muniz, Leone V. - FTh3D.7 Murakami, Naoshi - FM4D.3 Muralidharan, Sreraman - FTu1A.1 Muravyeva, Maria - JW3A.16 Murnane, Margaret M. - JTu5G.3, LW1H.1, LW1H.4, LW5H.5 Murphy, Dene - FTh1A.3 Murshid, Syed H. - FTh3B.3, FTh4B.3, JTu3A.37 Murzina, Tatiana V. - FTh1D.2, FTh3D.8, JW3A.33 Musacchia, Joseph - FW1E.4 Mutzafi, Maor - FTh1C.5, LM4G.3 Myer, Rachel - FTh4C.4 Myslivets, Sergey A. - FTu1A.5 Mysyrowicz, Andre - LTh3H.2, LW4I

Ν

Nader, Nima - FTu1E.5, JW3A.34 Nagamatsu, Yuichi - FW1C.4 Nagasaka, Kenshiro - JW3A.19 Nagy, James G. - FTu2C.5 Nahum, Eyal - FTu4G.4 Naidoo, Darryl - FTu1C.1 Nakagawa, Wataru - FW5B Nakamura, K. - FW4E.4 Nakamura, Shigeru - FM3A.2, FTu1D Nam, Inhyuk - FW5E.2 Namba, Yoshiharu - FTh4G.3 Narducci, Frank - FTu1C.3 Narimanov, Evgenii E. - FTh1D.6 Nash, Geoffrey - FTh3D.1, FTu1E.1 Nasiatka, Patrick J. - FTu5F.1 Nazemosadat, Elham - FM4C.5 Nees, John A. - FTh1F.2 Neeves, Keith B. - FTu1F.4 Nefedov, Igor S. - FTu1A.5 Neifeld, Mark Allen - FM3E.1, FTh3B.7 Nelleri, Anith - FM3E.5

Nelson, Robert - FTu1D.4 Nemati, Mahsa - FTh1E.2 Nembach, Hans - LW5H.5 Nemirovsky, Jonathan - FW5E.4, LM4G.3 Neshev, Dragomir N. - FTh1D.2 Neto, Luiz G. - FTh3D.7 Netti, Paolo A. - FTh1E.4, FTu5E.2, FW2G.1 Neugebauer, Martin - FTu4C.1 Neumann, Jö:rg - FTh4A.1 Neupane, Pauf - FTh1C.7, FTh3C.3 Newbury, Nathan R. - FW5G.4 Newman, Zachary - LTu1H.4 Nguyen, Tan - FTu4C.5 Nguyen, Thanh Nam - JTu3A.20 Ni, Xingjie - FTu2G.3 Nickel, Bert - FTh1G.6 Nielson, Stew - FM4D.2 Nieuwenhuizen, Robert - FW4G.6 Niknamfar, Maryam - FW4D.3 Ning, Cun-Zheng - FTh3E.1 Nippa, David - FTu2D.2 Nishikawa, Jun - FM3C.3 Nishimura, Nozomi - FM4F Nishio, Kenzo - FW4B.6 Nishizawa, Norihiko - FW1C.4 Noeriga, Benito R. - FW2B.5 Nolte, Stefan - FTu2D.1, FTu2E.3 Nolvi, Anton - FW5A.2 Nomoto, Sean - JTu3A.11 Norris, Theodore B. - LTh4I.1, LTu1I.1 Norwood, Robert A. - FTh1B.2, FW1D.2, FW4B.5, JTu3A.20, FTu1E Notaros, Jelena - FTh4D.3 Novikov, Vladimir B. - JW3A.33 Novotny, Lukas - FW2B.1 Nowak, Marian - JTu3A.31, JW3A.28 Nowrot, Andrzej - JTu3A.31 Nunn, Joshua - LTu2I,1, LTu5I

Ο

O'Brien, Kevin - LW2I.4 O'Connell, Robert - FTh3F.1 Odele, Ogaga D. - FW2C.2 Oesterling, Lee - FTu2D.2 Ofek, Nissim - FTh1C.4 Ogawa, Hisashi - FW4C.2 Oh. Youngiin - FW4G.7 O'Hara, Kenneth M. - LM4H.3 Ohdan, Hideaki - FW4C.3 Ohishi, Yasutake - JTu3A.33, JTu3A.35, JTu3A.36, JW3A.19, JW3A.21 Oiknine, Yaniv - FM3E.4 Ok, Jong G - LTh4I.1 Oka, Kazuhiko - FM4D.3 Okamoto, Ryo - FW1C.4 Okano, Masayuki - FW1C.4 Okulov, Alex - JTu3A.6 Okumura, Mitchio - LW5I.3 Okuyama, Yasushi - FM3C.3 Oldenburg, Amy L. - FTu5F.2, FW1E.3 Oliveira, Miriam F. - JW3A.39 Ooi, Kelvin J. - FTh3E.6 Orcutt, Jason - FM3A.3, FM4A Oren, Dikla - FTh1C.5 Orlovskii, Yurii V. - FTu5F.5 Orsinger, Gabriel - FTu4F.7 Ortega, Josu - FTh4C.7 Osellame, Roberto - FW4A.7 O'Sullivan, Malcolm - FM4E.4 Ota, Sadao - FW4G.1 Ota, Y. - LTu4H.1 Ott, Daniel - FTh4G.5 Otuka, Adriano J. - FW1A.7

Ρ

Padgett, Miles - FM4E.4, FTh3B.7, FTh4B.6 Padilla, Gabriel - FTh4G.7, FW1A.1 Pagliusi, Pasquale - FTu2G.5 Painchaud, Yves - FM3A.5 Palashov, Oleg - JTu3A.12 Palecek, David - JTu5G.4 Paliwal, Nidhi - JTu3A.40 Palomaki, Tauno - FW1C.1 Pamplona, Vitor - FW3F.2 Pan, Jian-Wei - FTu4A, FTu4A.1 Pan, Zeyu - FTh4E.4 Panagiotopoulos, Paris - LTh3H.1 Panoiu, Nicolae C. - FTh1D.2 Papa, Raffaele - FTu2B.4 Papadopoulos, Ioannis - FTh1G.7 Papay, Joel A. - FW5F.3 Papp, Scott B. - FM4B.4 Paraschis, Loukas - FTu1B.1 Parhar, Gurinder - FTh3B.3, JTu3A.37 Park, Jong Kang - LTh4H.3 Parkins, Andrew - FTu5A.1, FW2C.4 Parsi Sreenivas, Vijay V. - FTh4G.2

Pasquazi, Alessia - FTu2A.2 Patel, Raj - FW4C.1, FW5C Paturzo, Melania - FTh1E.4, FTu4C.7, FTu5E.2 Paul, Justin - JTu3A.14 Paul, Michael J. - LTu4I.5, LW2I.5 Paul, Surajit - FTu2D.4 Pausch, Richard - FTu4G.2 Pazos, Javier - FW1A.1 Peacock, Anna C. - FW1D.5 Peatross, Justin B. - LTh4I.4, LTh4I.5 Peccianti, Marco - FTu2A.2 Pelegrina-Bonilla, Gabriel - FTh4A.1 Penfield, Allison - FTh4C.4 Peng, Peng - FTu5A.2 Perez-Chimal, Rosa J. - JTu3A.38 Perez-Leija, Armando - FTu2D.1 Pessin, Jeremy - FTh1G.4 Petersen, Jan C. - LTh4H.2 Peterson, Robert - LTu2I.3 Petev, Mihail - LTh3H.1 Peyghambarian, Nasser - FTh1A.1, FTh1B.2, FTu4F.4, FW1D.2, FW4B.5, JS1A.7, JTu3A.20 Pfeiffer, Franz - FTu4G.1 Phelan, Ciaran F. - FTu5B.2 Phillips, David F. - FW5D.2 Phillips, Zachary F. - FTu2F.5 Picarelli, Luciano - FTu2B.4 Picon, Antonio - LW5H.6 Picqué, Nathalie - FW5G.2 Pikovski, Alexander - LM3H.4 Pirotta, Stefano - FW1B.3 Piscitelli, V. - JTu3A.19 Plaja, Luis - JTu5G.3, LW1H.1, LW5H.6 Plansinis, Brent - FTu2G.1 Poddubny, Alexander N. - FW4A.3, LW1G.3, LW4H Podoleanu, Adrian G. - FTu2F.3 Pohlmann, Paula - FM4F.4 Polianska, Olena - JW3A.1 Polzik, Eugene S. - FW1C.2 Pooser, Raphael - FTh4C.2, FW4C.5 Poperenko, Leonid - JW3A.2 Popescu, Gabriel - FTu4C.5, FW2A.3 Popmintchev, Dimitar - LW1H.1 Popmintchev, Tenio - JTu5G.3, LW1H.1 Popoff, Sebastien - FTh1C.4, FW5C.5

Popov, Alexander K. - FTu1A.5,

FTu5F.5

Popovic, Milos - FTh4D.3, FTu5D.3, FTu5D.4, FW1B.4 Popp, Antonia - FTu4G.1 Pottiez, Olivier - JTu3A.38 Pouli, Dimitra - FTu5E.1 Poulin, Michel - FM3A.5 Poulton, Christopher G. - FM4A.5, FTh4E.7 Poulton, Christopher V. - FW1B.4 Povinelli, Michelle L. - FTu1F.2 Prabhakar, Shashi - JTu3A.11 Preciado, Miguel A. - FTh1A.8, FTh3G.5, FTu1A.6 Preu, Sascha - FM3B.4 Primot, Jerome - FTh3A.4 Proesel, Jonathan E. - FM3A.3 Prokopeva, Ludmila J. - FTu2G.2 Provenzano, Clementina - FTu2G.5 Prucnal, Paul - FTh1B.5 Pryde, Geoffrey - FW4C.1 Psaltis, Demetri - FTh1G.7 Pucci, Annemarie - LTh4H.4 Pugh, Jonathan - FTh3D.1 Pukhov, Konstantin - FTu5F.5 Purdy, Thomas - LTu2I.3 Pyle, Andrew J. - LTh11.7

0

Qassim, Hammam - FTu2A.3 Qi, Minghao - FM4B.3, FTu4D.5 Qiao, Jie - FTu2C.4 Qin, Guanshi - JW3A.19 Qiu, Ling - FW2B.2 Qiu, Wenjun - FW4B.3 Qu, Kenan - JTu3A.30 Qu, Weizhi - JTu3A.28 Quéré, Fabien - JTu4E.1 Quimby, Richard S. - FW2D.2 Quinn, Kyle - FTu5E.1

R

Rabien, Sebastian - JW3A.8 Radic, Stojan - FM3C.1 Rading, Linnea - JTu4E.3 Radulaski, Marina - LTh1H.2 Radünz, Stefan - FTh1G.6 Radzewicz, Czeslaw - LTu5I.3 Raghuwanshi, Sanjeev K. - JW3A.20 Rahmer, Gustavo - JW3A.8 Räisänen, Antti - FM3B.4 Raiaram, Narasimhan - FM3F.4

Rajput, Deepak - FTh4G.4 Rakich, Peter - FW4B.3 Ralph, Tim - FW4C.1 Ramachandran, Prakash - FM3E.5 Ramos-Garcia, Ruben - JW3A.27 Rani, Preeti - JW3A.32 Rarity, John - FTh3D.1 Rasras, Mahmoud - FTu2E, FW1B Rauhut, Roman - FTh1G.6 Rauschenbeutel, Arno - LW4H.4 Rawlinson, Willa - JTu3A.15 Ray, Michael W. - LM4H.2 Rayas, Juan - FTh3G.2 Raymer, Michael G. - FTu4A.5 Reano, Ronald M. - FTu1D.3, FTu4D Rechtsman, Mikael - FW5E.4 Redding, Brandon - FTh1C.4, FTu5C.1, FW2G.2, FW4G.5, LTh4I.3, FW1E Reddy, Dileep V. - FTu4A.5 Reed, Jennifer M. - FTu1G.5 Regal, Cindy - LTu2I.3 Reichert, Matthew - FTu1G.5 Reimer, Christian - FTu1G, FTu2A.2 Reinecke, Thomas L. - LW4H.2 Reinholm, Carol - FM3A.4 Reintjes, John F. - FW4C.6, LTh1I.3 Reitze, David - LM4G Ren, Kuan F. - FM4D.5 Ren, Yongxiong - FTh3B.4, FTh3B.7, FTh4B.6 Ren, Zhichena - FTu1C.5 Ren Yan - JTu3A.9 Rey, Ana Maria - LM3H.4 Reyna Ocas, Albert - JTu3A.41 Rhodes, Michelle - FTh4A.2 Richards-Kortum, Rebecca - FTu2F.4, FTu4F.6 Richardson, Martin - FTh1F.1, FTh3F Rieger, Bernd - FW4G.6 Ringbauer, Martin - FW5C.1 Ritsch-Marte, Monika A. - FTu1F.6, FTu4F Rivas, Daniel - JTu4E.2 Rivera, Jose A. - FTu5D.5 Roberts, Adam T. - LTu4I.3, LTu4I.4

Roblyer, Darren M. - FM3F.2

FTh4A.4

Rodenburg, Brandon - FM4E.4,

Rodriguez, Horacio P. - FTh3B.5

Rodríguez, Margarita C. - FTu5E.3

Key To Authors

Key To Authors

Rojas, Armando G. - FW2B.5, FW2B.6, FW4D.2 Rojas-Laguna, Roberto - JTu3A.38 Rojec, Brett L. - JW3A.24 Rolland, Jannick P. - FW1E.5, FW5A Rolland-Thompson, Kevin - FTh4G, FM4D Romanishkin, Igor - FTu5F.5 Romanowski, Marek - FTu4F.7 Rose, Alec - FTh4E.1 Rosenberg, Jessie - FM3A.4 Rosenberger, Albert T. - FM4D.7, LTh3I.4 Rosenthal, Eric - LW4I.1, LW4I.4 Rosenzweig, James - FW5E.1 Rostrami, Ali - FTu1D.1 Roth, Kevin B. - FTu1F.4 Roth, Martin - FW5D.4 Roussignol, Ph. - FM3B.3 Roychoudhuri, Chandra - FTh4D.2, JTu3A.32 Rudawski, Piotr - JTu4E.3 Rudolf, Dennis - LW5H.5 Rui, Guanghao - FTu1C.4, FW1A.2 Rumpf, Raymond C. - FW1A.1 Rundquist, Armand - LTh1H.2, LTu4H.3 Ruokokoski, Emmi - LM4H.2 Russell, Philip St.J - FM4C.6 Ryabova, Anastasia - FTu5F.5

Roger, Thomas - LTh3H.1

S

Ryf, Roland - FTh3B, FTh4B.1

Saad, Mohammed - FW2D.2 Saastamoinen, Kimmo - FTh4D.1 Sabharwal, Ashutosh - FW3F.1 Sahin, Furkan E. - FTu5F.1 Sahl, Steffen J. - FM3E.2 Saija, Rosalba - FTu2G.5 Saini, Than Singh - FW1D.4 Sakadzic, Sava - FW1E.4, FW4G Sakaguchi, Koichiro - JW3A.31 Sakamoto, Moritsugu - FM4D.3 Salas-Garcia, Irene - FTu2F.6, FTu4F.1 Salazar, Ángel- FTh3G.6 Salazar Serrano, Luis Jose - FM4D.6, FTh1G.5 Salceda-Delgado, Guillermo -FTu4B.3 Saleh, Bahaa E. - FTh1C.3, FTu4A.7

Samad, Ricardo E. - JW3A.13, LTh4I.6 Samaniego, Adam - FW3F.1 Samsonova, Elena - FTu5F.5 San Roman, Julio - LW5H.6 Sanchez Perez, Celia - FW4G.8 Sanders, Barry - FTh4C.6 Sandhu, Arvinder - LTu2H.3, LTu2H.4, LTu4I.3, LTu4I.4, LW5H.4 Sankhagowit, Shalene - FTu1F.2 Santos, Whelton B. - JW3A.39 Santra, Robin - LTu2H.3 Sarailou, Edris - FTu1D.6, FTu2A.5 Sarkar, Resham - JTu3A.27 Sarma, Raktim - FTh1C.6, FTh1C.7, FTu1G.7 Sarmiento, Tomas - LTh1H.2 Sasselov, Dimitar - FW5D.2 Sato, Shunichi - FM3D.2 Sauerbrey, Roland - FTu4G.2 Savona, Vincenzo - FW1B.3 Sayinc, Hakan S. - FTh4A.1 Scalora, Michael - FW1B.6 Schaake, Jason C. - FTh4C.2 Schachenmayer, Johannes - LM3H.4 Schafer, Rachel L. - FW2G.4 Scherer, Axel - FW4B.1 Scheu, Christina - FTh1G.6 Schleede, Simone - FTu4G.1 Schleifer, Elad - FTu4G.4 Schlichenmeyer, Tyler C. - FM4F.3, FW1E.2 Schliesser, Albert - FW1C.2, FW5G.2 Schmid, Silvan - FW1C.2 Schmidt, Bruno - JTu5G.1 Schneider, Christian - LW2I.2 Schneider, Claus - LW5H.5 Schneidereit, Martin F. - FM3B.4 Schnell, Martin - FTu4C.6 Scholten, Rob E. - FTh1A.3 Schramm, Ulrich - FTu4G.2 Schroder, Bryce W. - FTu1F.5 Schroder, Tim - FTu1A.2 Schröder, Hartmut - JTu4E.2 Schroeder, C. B. - FW4E.4 Schubert, Olaf - LTu4I.2 Schuh, Kolja - LW11.3 Schulz, Sebastian A. - FTu2A.3, FW1B.5 Schulzgen, Axel - FTu4B.3 Schumacher, S. - FM3B.3 Schurig, Florian - FW5A.3

Schwefel, Harald G.L. - FM3B.4, LTh3I.5 Schwiegerling, Jim - FW4F.1 Schwoerer, Heinrich - FTu1G.8 Sciarrino, Fabio - FTu2A.1, FTu4A.2, FW4C Seaberg, Matthew - LW1H.4 Sears, Jasmine - LW1G.4, LW1G.5 Sedivy, Donald E. - FW1A.3 Sedlmeir, Florian - FM3B.4, LTh3I.5 Sega, Daisuke - JW3A.21 Segev, Mordechai - FTh1C.5, FW5E.4, LM4G.3 Seki, Satoshi - FM3C.2 Senatore, Michael A. - FTu1F.3 Seo, Yoonho - FW5A.5 Sergienko, Alexander V. - FM4E.2, FTu1A.3, FTh1C, FTh4C, FM4B, FW2C Seshadri, S. R. - LTh4I.7 Setälä, Tero - FTh4D.1 Shadaram, Mehdi - FW4D.3 Shah, Amy - FM4F.4 Shahriar, Selim - FTh4G.6, FTu5A.3, JTu3A.27 Shakeri, Mojtaba - FM4F.5 Shalaev, Vladimir M. - FM4B.5 Shanblatt, Elisabeth - LW1H.4 Shang, Ruibo - FW4G.3 Shank, Steve - FM3A.3, FM3A.4 Shapiro, Boris - FTh1C.7 Shapiro, Jeffrey - FTh3B.7 Sharma, Katelvnn - FTu4C.4 Shaw, B. - FW4E.4 Shaw, Justin - LW5H.5 Shechtman, Yoay - FM3E.2 Shen, Guozhen - FM3B.5 Shen, Jung-Tsung - FM3E.3 Shen, Li - FW1D.5 Shen, Yichen - FTh4A.3 Shen, Yuecheng - FM3E.3 Sheng, Chong - FTu5D.1 Shi, Siyuan - FW1C.3 Shi, Zhou - FTh3C.2 Shim, Jaeho - FW1A.5 Shin, Dongsuk - FTu2F.4 Shin, Heedeuk - FW4B.3 Shinohara, Susumu - JW3A.31 Shioda, Tatsutoshi - FM3C.2 Shirakawa, Akira - FW5D.3 Shivaram, Niranjan - LTu2H.3, LW5H.4

Shiyanovskii, Sergij V. - FTh4B.4 Shrestha, Sajan - LTh1H.3 Shu, Liya - FW2G.5 Shuliatyev, Alexey - FTu1E.6 Siegel, Jan - JTu3A.2 Silberhorn, Christine - LTu5I.2 Sildos, Ilmo - FTu5F.5 Silva, Thomas - LW5H.5 Simkhovich, Boris - FTh3E.4 Simmonds, Raymond - LTu2I.3 Simon, Christoph - FTu1A.4, LTh1I.6 Simon, David - FM4E.2 Simonsen, Anders - FW1C.2 Simpkins, Blake S. - FTh4E.4 Sinclair, Laura C. - FW5G.4 Singh, R. P. - JTu3A.11 Singh, Surendra - JTu3A.10, JTu3A.11 Singh, Swati - FW1C.5 Singh, Ved P. - LM4G.2 Singh, Vivek - FTh1E.3, FTu4D.3 Sinha, Ravindra K. - FW1D.4, JW3A.32 Sinzinger, Stefan - FW5A.3 Skagerstam, Bo-Sture - FTu5A.1 Skala, Melissa - FM3F, FM4F.4 Skirlo, Scott - LM4G.3 Slussarenko, Sergei - FTu4A.2 Smirnov, Vadim - FTh4G.5 Smith, Brian J. - FW2C.5, LTh11.5 Smith, David R. - FM4B.5, FTh4E.1 Solaka, Nadine - FW3F.2 Solenov, Dmitry - LW4H.2 Solis, Javier - JTu3A.2 Soljacic, Marin - FTh4A.3 Solmaz, Mehmet - FTu1F.2 Solomon, Glenn S. - LTh4I.3 Son, Jaehveon - FW5B.3 Son, Tran Vinh - FTh3D.6, FW2B.3 Sonderhouse, Lindsay - FW5G.4 Song, Daohong - FTu2E.2 Song, Hyerin - JW3A.3 Song, Shichao - FTh1D.5 Soref, Richard - FTu1D.5 Sørensen, Anders S. - FW1C.2 Soukoulis, Costas M. - FTh1D.4 Souza, Narcizo m. - LTh4I.6 Sparkes, Ben M. - FTh1A.3 Speirs, Rory W. - FTh1A.3 Spektor, Grisha - FTh3D.5 Spielman, Ian B. - LM3H.1 Spivey, Amelia V. - FTh4D.4

Sponselli, Anna - FTu4A.2 Springer, P. - LTu11.1 Squier, Jeff - FTu1F.4 Srinivasan, Balaji - FTh3G.7 Srinivasan, Kartik - FW4B.2, LW2I.1 Stack, Ronald A. - FTh1G.4 Stahl, Charlotte - FTu5C.2 Stallinga, Sjoerd - FM4F.5, FW4G.6 Stambaugh, Corey - LTh1H.4 Stamenov, Igor - FTh1G.4 Stamper-Kurn, Dan M. - LM4H.1 Starbuck, Andrew - FW4B.3 Starczewska, Anna - JW3A.28 Stashchuk, Vasyl S. - JW3A.1 Steel, Duncan G. - LTu11.3 Steel, Michael J. - FM4A.5, FTu2D.3 Steiniger, Klaus - FTu4G.2 Steinke, S. - FW4E.4 Steinmever, Gunter - LW4I.2 Stern, Adrian - FM3E.4 Stickel, Andrew D. - LTu41.5 Stiles, Noelle R. - JW3A.38 Stoian, Razvan-Ionut - LTh3I.4 Stone, Douglas - FW2G.2 Storteboom, Jelle - FTh1A.7 Strekalov, Dmitry V. - FM4B.2 Strever, William - FTu1E.5 Stricker, Andreas - FM3A.3, FM3A.4 Stuetzer, Simon - FTu2E.3 Su, Yu-Lun - FTh3D.4 Subbaraman, Harish - FTu1D.4, FW5B 4 Suche, Hubertus - LTu5I.2 Suchowski, Haim - FM4A.4 Suk, Hyyong - FW5E.2 Sulai, Yusufu N. - FW5F.2 Sumetsky, Misha . - FTu1B.2 Sun, Xiaole - FTh3B.6 Sun, Yu - FW4G.4 Sun, Yu-Zhu - FM4B.2 Sunada, Satoshi - JW3A.31 Supradeepa, V. R. - FTh3B.1 Suriano, Raffaella - FW4A.7 Sussman, Benjamin J. - LTh11.2 Susumu, Kimihiro - LTh4H.3 Suzuki, Takenobu - JTu3A.33, JTu3A.35, JTu3A.36, JW3A.19, JW3A.21 Svyakhovskiy, Sergey E. - FTh3D.8, JW3A.33 Swan, Elizabeth - FTu4F.5

Sweeney, Timothy M. - LW4H.2 Sweet, Julian - FTu1D.5, LW2H Symul, Thomas - LW2H.2 Szameit, Alexander - FTu2D.1, FTu2F 3 Szentgyorgyi, Andrew - FW5D.2 Szperlich, Piotr - JTu3A.31, JW3A.28

т

Tabassum, Syeda - FM3F.2 Taheri, Hossein - FTh4C.5 Tajima, Akio - FM3A.2 Takahashi, Eiji J. - JTu5G.2 Takamasu, Kivoshi - FM3C.4 Takashima, Yuzuru - FTh3B.6, FW5A.4 Takeda, Shuntaro - FTu4A.3, FW2C.3 Takeshita, Hitoshi - FM3A.2 Takeuchi, Hiromitsu - JTu3A.16, JTu3A.18 Takeuchi, Shigeki - FW1C.4 Taki, Mohammad - FTu4B.5 Tamosauskas, Gintaras - LTh3H.1 Tamura, Motohide - FM3C.3 Tan, Cheng-En - FW4G.2 Tan, Dawn T. H. - FTh1E.3, FTh3E.6, FTu4D.3 Tanabe, Takasumi - FTu5D.6 Tanaka, Akira - FW1C.4 Tanaka, Yosuke - FM3C.2 Tang, Ligin - FTu2E.2 Tanguay, Armand R. - FTu5F.1, JW3A.38 Tani, Francesco - FM4C.6 Tao, Xu-Tang - JTu3A.9 Tapang, Giovanni A. - FTu4C.3 Tassin, Philippe - FTh1D.4 Tate, Tyler - FTu4F.5 Tatulian, Adrian - FW1A.1 Taunay, Thierry - FTh3B.1 Taylor, Jacob M. - FW1C.2, LTh1H.4 Tchawoua, Clement - FTh4B.5 Terazima, Masahide - LTu5H.3 Terekhov, Alexander - FTh4G.4 Theeq, Thomas - FTh4A.1 Theisen, Michael J. - JW3A.36, LTh4H.3 Thiessen, Torrey - FW4B.4 Thomas, Abu - FTu1A.3, FW1C.3 Thomas, Alexander - FTh1F.2, FW4E.2 Thompson, Daniel J. - FTh1A.3 Thompson, Jeff - LW4H.3

Thompson, John R. - FW5C.8 Thompson, Zack J. - LTu4I.5 Thomson, Robert - FTu2G.4 Thyagarajan, Krishna - FTu2D.4, LTu5I.3 Tian, Lei - FW1E.7, FW2E.3, FTu5E Tibbo, Maria - FW5C.2 Tignon, J. - FM3B.3 Timmers, Henry - LTu2H.3, LTu2H.4, LW5H.4 Tiurev, Konstantin - LM4H.2 Tiwald, Tom - FTu4D.3 Tjin, Swee Chuan - FTu4B.2 Tkaczyk, Tomasz - FTu4F.6 Toba, Shunsuke - FTu4A.3 Tocho, Jorge O. - JTu3A.1 Tokuda, Yasunori - JW3A.31 Toma, Andrea - LTh4H.4 Tomaino, Joseph L. - LTu4I.1 Toneyan, Hrach - FW4D.5 Tong, Hoang Tuan - JTu3A.36 Tong, Xiao-Min - LW5H.4 Toroghi, Seyfollah - JTu3A.8 Torres, Juan P. - FM4D.6, FTh1G.5 Torres, Pedro - FTu2B.2, FW4D.4 Toth, C. S. - FW4E.4 Town, Graham - FM4D.4, FW5B.6 Tran, David - JW3A.12 Travers, John C. - FM4C.6 Trebino, Rick - FTh4A.2 Tripathi, Sandeep N. - FTu2B.3 Triplett, Gregory - JW3A.35 Troilo, David - FW4F.2 Trusheim, Matthew E. - FTu1A.2 Tsai, Din Ping - JW3A.29 Tsai, Esther - FM4F.1 Tsakanov, Vasili - FW4D.5 Tsang, C. - FM3B.3 Tse, Y. - FM3B.3 Tseng, Min Lun - JW3A.29 Tsubota, Makoto - JTu3A.17, LTu1H.1 Tsui, Ying Y. - FM3A.5 Tu, Chao-Yang - JTu3A.25 Tu, Chenghou - FTu1C.5 Tulman, David - FW1E.2 Tünnermann, Henrik - FTh4A.1 Tuominen, Eija - FW5A.2 Tur. Moshe - FTh3B.7 Turgut, Emrah - LW5H.5 Turola, Massimo - JTu3A.24 Turri, Giorgio - JTu3A.8

Turri, Stefano - FW4A.7 Twitchen, Daniel - FTu1A.2 Tyo, J. Scott - FW2E.1 Tzallas, Paraskevas - JTu4E.2

U Udd, Eric - FTu4B.1 Uddin, Mohammad J. - FM3D.4 Umstadter, Donald P. - FTh3F.3, FTu4G.3 Ungureanu, Razvan - LW11.5 Ünlü, Selim M. - FTu1G.2 Upham, Jeremy - FTu2A.3, FW1B.5 Ura, Shogo - FW4B.6 Urbach, Paul - FTh1E.2, FTh3D.2, FW2A.2 Urbanek, Benedikt - LTu4I.2 Urbinati, Giulia - FW1B.3 Uribe-Patarroyo, Nestor - FM4E.2 Ursin, Rupert - LW2H.3 Usaki, Ryo - JTu3A.35 Usami, Koji - FW1C.2 Usui, Ayaka - JTu3A.18 Utzinger, Urs - FTu4F.5 Uyar, Aydan - FTu1G.2

v

Vadimova, Olga - JTu3A.12 Vahala, Kerry J. - FM3B.1 Valdiviezo, Juan C. - FTu5E.3 Valencia, Alejandra - FM4D.6, FTh1G.5 Vallee, Real - FTh3D.6, FW2B.3 Vallone, Giuseppe - FTu4A.2 Valmorra, Federico - FTu1E.1 Vamivakas, Anthony N. - FW2B.1 Van, Vien - FM3A.5 van Dijk, Thomas - FTh4D.5 van Loock, Peter - FTu4A.3, FW4C.3 Van Newkirk, Amy - FTu4B.3 Van Strvland, Eric W. - FTu1G.5 Van Tilborg, Jeroen - FTh1A, FW4E.4 van Vliet, Lucas - FM4F.5 Vanetsev, Alexander - FTu5F.5 Vangala, Shiva - FTu1E.5 VanNasadale, Dean A. - FW5F.3 Varone, Antonio - FTu5E.1 Vassallo, Roberto - FTu2B.4 Vay, J. L. - FW4E.4 Veeraraghavan, Ashok - FW3F.1 Veillet, Christian - JW3A.8

Veisz, Laszlo - FTu4G.1, JTu4E.2, FTh4A, FW4E, FW5E, JTu4E Velev, Vesselin - FTu4A.4 Vendrell, Oriol - LTu2H.3 Vengalattore, Mukund - FW1C.5 Venkatesan, Sriram - FTh1G.6 Ventre, Maurizio - FTu5E.2 Vera-Marquina, Alicia - FW2B.5, FW2B.6, FW4D.2 Veretennicoff, Irina - FTh1D.4 Veronis, Georgios - FTh3D.3 Vial, Matias A. - FTh3B.5 Vieira, Fernando F. - JW3A.39 Vieira, Nilson D. - LTh4I.6 Villa Velázquez Mendoza, Carlos I. -FW2B.5 Villanueva, Louis G. - FW1C.2 Villegas, David - FTu5E.3 Villoresi, Paolo . - FTu4A.2, FTu1A Vinas, Maria - JW3A.37 Vincent, Kathy - FTu4F.3 Vincenti, Maria Antonietta - FW1B.6 Visscher, Koen - JW3A.14 Vlasov, Yurii A. - FM3A.3, FM3A.4, FM4A.1 Vohnsen, Brian - FW5F.5, JW3A.40 Vollet, Dimas R. - FW1A.7 Vora, Patrick M. - LW4H.2 Vos, Willem L. - FW5C.5 Vuckovic, Jelena - LTh1H.2, LTu4H.3 Vurgaftman, Igor - LTh11.3 Vyas, Reeta - JTu3A.10, JTu3A.11, JTu3A.15 Vyas, Sunil - FM3D.2

w

Wade, Mark T. - FTu5D.4, FW1B.4 Wagner, Mark R. - JW3A.8 Wahlstrand, Jared K. - LW4I.1 Wahsheh, Rami A. - FTh4E.5 Waks, Edo - LTh1H.1 Walker, Barry - LW1H.1 Waller, Laura - FW1E.7, FW2E.3, FTu5C Walmsley, Ian A. - FTu4A.6 Walsh, Alex - FM4F.4 Walsh, Michael - FTu1A.2 Walsworth, Ronald L. - FW5D.2 Wan, Chenchen - FTh1A.6, FTu5A.6 Wan, Yuhang - FW2G.5 Wandel, Scott - FTu1G.1

Wang, Feng - LTu4H.3 Wang, Hao - FTu1E.2 Wang, Huitian - FTu1C.5 Wang, Jian - FM4B.3 Wang, Kai - FM3B.5 Wang, Lihong V. - FM3E.3 Wang, Mei - FM4F.3, FW1E.2 Wang, Mingfeng - JTu3A.28 Wang, Pei-Hsun - FM4B.3 Wang, Shiyi - FW5B.4 Wang, Tian - FTu1A.4, LTh1I.6 Wang, Ting - FTh1B.5 Wang, Yuan - FM4A.4, FTu2G.3, FW4G.1, FW5C.6, LW2I.4 Wang, Yuanyuan - JTu3A.9 Wang, Zhaorong - LW2I.2 Wang, Zheng - FW4B.3 Wang, Zhenhua - FTh4A.5 Wardini, Jenna L. - LTu4I.5 Ware, Michael J. - LTh4I.5, LTh4I.8, LTh4I.4 Warren, Warren S. - LTh4H.3 Wasserman, Daniel M. - FTu1E.5 Watson, Edward A. - FTu5E.4 Watts, Michael R. - FM3A.1 Waxman, David - FM3F.2 Weaver, Christopher M. - LM4H.3 Webb, Kevin J. - FM4F.1 Webster, Scott - JTu3A.8 Wegener, Martin - LW1G.4, LW1G.5 Wei, Haoyun - FTh3G.4 Wei, Lei - FTh3D.2, FW2A.2 Weidmann, Matthew - JTu4E.2 Weiland, James D. - FTu5F.1 Weiner, Andrew M. - FM4B.3, FW2C.2 Weismann, Martin - FTh1D.2 Wenk, Carola - FM4F.3 Wenz, Johannes - FTu4G.1 Werner, Nils - LW2I.6 Wessels, Peter - FTh4A.1 Westwood, Jocelyn N. - FM3A.5 White, Andrew - FW5C.1 Whitesides, George - FTh1E.3 Wickham, Benjamin - JTu3A.8 Wiederrecht, Gary - FTu1E.8 Williams, Henry E. - FTh4G.7 Willner, Alan - FTh3B.4, FTh3B.7, FTh4B.6 Wilson, Kali E. - LTu1H.4, LTh1L Wiseman, Howard - FW2C.3 Wissinger, John - FTh1B.2

Wright, Mercedes - LTh4I.8 Wu, Chihhui - FM4A.4, FW5C.6 Wu, Junjie - FM3F.2 Wu, Qiang - FTh4A.5 Wu, Sanfeng - LTu4H.3 Wu, Shao-Hua - FTu1F.2 Wu, Sheldon - FTh1F.4 Wu, Tsung-Han - FTh1A.2, JTu3A.14, JTu3A.22 Wu, Xuejian - FTh3G.4 Wu, Yu-E - FTh4A.5 Wyant, James C. - JS1A.1

Х

Withford, Michael J. - FTu2D.3

Wittmann, Tibor - JTu4E.2

Wochnik, Angela - FTh1G.6

Woeste, Ludger - LW4I.3

Wolf, Jean Pierre - LW4I.3

Wolff, Christian - FM4A.5

Wolterman, Rick - FTu2D.2

Wong, Chee Wei - LTh1H.3

Wood, James K. - FTu4C.4

Wright, Ewan M. - JTu3A.22

Wood, Michael - FTu1D.3

Wright, Laura J. - FW2C.5

Wong, Zi Jing - FW4G.1

Wolf, Emil - FTu1C.2

Xia, Shiqiang - FTu2E.2 Xia, Zhilin - FW4A.4 Xiao, Jun - FTu2G.3 Xiao, Yanhong - JTu3A.28 Xiao, Yuzhe - FW4D.6 Xie, Guodong - FTh3B.4, FTh3B.7, FTh4B.6 Xie, Xinhua - LW5H.2

Xie, Zhenda - LTh1H.3 Xiong, Chi - FM3A.4 Xu, Guibao - FTu1G.1 Xu, Haitan - LTh1H.4 Xu, Jiancai - FTu4G.1 Xu, Jingjun - FTh3C.5, FTh4A.5, FTu2E.4, FTu5A.4 Xu, Jin-Long - JTu3A.25 Xu, Lei - FTh3C.5, FTu2E.4 Xu, Qiang - FTu1D.3 Xu, Xiaodong - LTu4H.3 Xu, Xiaojun - FTu5A.5 Xuan, Yi - FM4B.3 Xue, Tingyu - FTu1E.3 Xue, Xiaojie - JTu3A.33, JTu3A.35, JW3A.21 Xue, Xiaoxiao - FM4B.3 Xvlas, Joanna - FTu5E.1

Y

Yakovlev, Egor - FTu2A.4 Yamane, Keisaku - FM4D.3 Yamilov, Alexey G. - FTh3C.3, FTh3C.4, FTh1C.6, FTh1C.7 Yan, Man - FTh3B.1 Yan, Yan - FTh3B.7, FTh4B.6 Yanagimachi, Shigeyuki - FM3A.2 Yang, Haw - LTu5H.1 Yang, Jilin - FW5A.4 Yang, Jinghui - LTh1H.3 Yang, Lily - LW4H.2 Yang, Shang-Hua - FTh3E.5 Yang, Sui - FTu2G.3 Yang, Wei - FTu2F.4, FTu4F.6 Yankowitz, Mathew - LTu4I.4 Yanovsky, Victor - FTh1F.2

Yao, Yuhong - FM3C.5 Yardimci, Nezih T. - FTh3E.5 Yaseen, Mohammad - FW1E.4 Ye, Jun - LW5I.3 Ye, Ziliang - LW2I.4 Yee, Ki-Ju - LW2I.5 Yeh, Chia-Hua - FW4G.2, JW3A.17 Yeom, Jiwoon - FTh4G.1 Yi, Yasha - FTu1E.4 Yin, Xiaobo - FW4G.1, FW5C.6, LW2I.4 Yonezawa, Hidehiro - FW4C.2 Yong, Soo - FTh1E.1 Yoon, Jun-Bo - FW1A.5 Yoon, Yonghee - FW5A.5 Yoshikawa, Jun-ichi - FW4C.3 Yoshiki, Wataru - FTu5D.6 Yoshimura, Kazuyuki - JW3A.31 You, Jong-Bum - FW1A.5 You, Yong Sing - LW11.4 Yu, Kyoungsik - FW1A.5 Yu, Song - JW3A.23 Yu, Wei - FTu4D.4 Yu, Yu - FTu5A.5 Yu, Zhongyuan - FTh3B.6 Yuan, Qun - FW1E.5 Yun, Seok-Hyun A. - LTu5H.2 Yurchenko, Stanislav O. - FTu2A.4 Yurt, Abdulkadir - FTu1G.2

Ζ

Zadoyan, Ruben - FW4D.5 Zakharov, Yuri - JW3A.16 Zaldivar, Ignacio - FW2B.5, FW2B.6, FW4D.2 Zandbergen, Sander - LW1G.4, LW1G.5, LTu11 Zandrini, Tommaso - FW4A.7 Zarubin, Alexander - JTu3A.23 Zaverton, Melissa - JW3A.7 Zawadzki, Robert J. - FW5F.1, FW2F Zaytsev, Kirill I. - FTu2A.4 Zeldovich, Boris Y. - FTh4A.7, FTh4G.5 Zeltner, Richard - LTh3I.5 Zeng, Xiaoge - FTu5D.3, FTu5D.4, FW1B.4 Zeni, Giovanni - FTu2B.4 Zeni, Luiai - FTu2B.4 Zeuthen, Emil - FW1C.2 Zeytunyan, Aram - FW4D.5 Zghal, Mourad - FM3B.6, FW1D.3 Zhan, Qiwen - FTu1C.4, FW1A.2, FW5B.4 Zhang, Bo - LW2I.2 Zhang, Bosheng - LW1H.4 Zhang, Boyang - JW3A.34 Zhang, Cheng - FTu1E.7, LTh4I.1 Zhang, Dan - FW5B.5 Zhang, Dongwen - LW11.4 Zhang, Guoguan - FTh3C.5, FTu2E.4, FTu5A 4 Zhang, Han-Wei - JW3A.6 Zhang, Hongyuan - FTh3G.4 Zhang, Jingwen - FTu1E.2, FTu1E.3 Zhang, Lin - FTu4D.4, JW3A.26 Zhang, Qiming - FW4A.4 Zhang, Xiang - FM4A.4, FTu2G.3, FW4G.1, FW5C.6, LW2I.4 Zhang, Xi-Cheng - LW1I.2

Zhang, Xingyu - FTu1D.4, FW1B.2, FW5B.4 Zhang, Xinzheng - FTh4A.5 Zhang, Zhaoyu - FTh4A.6 Zhao, Fengyun - FTh4A.6 Zhao, Hua - FTu1E.2, FTu1E.3 Zhao, Peng - FTu1G.5 Zhao, Xin - FM4C.2, FM4C.3, FM4C.4 Zheng, Xiaorui - FW2B.2 Zheng, Zheng - FM4C.2, FM4C.3, FM4C.4, FW2G.5, FW4G.4 Zhong, Tian - LW1G.2 Zhou, Minchuan - FTu5A.3 Zhou, Weidong - FW5B.1 Zhu, Benyuan - FTh3B.1 Zhu, Bihui - LM3H.4 Zhu, Chengjie - FTh1A.5 Zhu, Gongwen - FW1D.2 Zhu, Hanyu - LW2I.4 Zhu, Shining - FTu5D.1 Zhu, Xiushan - FW1D.2 Zhu, Xuekun - FW2G.5 Zhu, Yizheng - FW4G.3 Zibrov, Alexander - FW5D.2 Zigler, Arie - FTu4G.4 Zigmantas, Donatas - JTu5G.4 Zilio, Sérgio C. - JTu3A.21 Ziltz, Austin - LTh11.7 Zimmerman, Brandon G. - FM3D.7 Zimmermann, Lars - FW5B.2, FW5D.4 Zink, Christof - LW2I.6 Zong, Yuanyuan - FTu2E.2 Zubairy, M. Suhail - FW4C.7 Zusin, Dmitriy - LW5H.5 Zverev, Mihail - FTu2F.6, FTu4F.1 Zwierz, Marcin - FW2C.3