
Reference

[1]: Joseph A. Izatt, Manish D. Kulkarni, Siavash Yazdanfar, Jennifer K. Barton, and Ashley J. Welch, "In vivo

bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Opt.

Lett. 22, 1439-1441 (1997)

[2]: Yonghua Zhao, Zhongping Chen, Christopher Saxer, Shaohua Xiang, Johannes F. de Boer, and J. Stuart

Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in

human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000)

[3]: Li Kai and Qian Kemao, "A generalized regularized phase tracker for demodulation of a single fringe pattern,"

Opt. Express 20, 12579-12592 (2012)

Conclusions and Discussions

Using the modified Robust Phase Tracker algorithm, we demonstrated D-

OCT velocity map unwrapping of datasets with peak velocity as high as 17.2

cm/s (~10 times Vmax). The results is verified by the simulation to be

accurate and physical. This algorithm significantly extends the measureable

range of D-OCT velocity maps. The implementation of this algorithm on

CUDA brings significant acceleration to the algorithm, reducing the

processing time for each of the images to the order of seconds. This makes

semi-realtime filtering and unwrapping of such datasets possible.

Filtering and Unwrapping Doppler-OCT for Extended Range of Microscopic Fluid

Velocity Measurement Yang Xu1,2, Donald Darga2, Jason Smid2, Adam M. Zysk2, Daniel Teh1, Stephen A. Boppart1,2, P. Scott Carney1,2

Background

Doppler optical coherence tomography (D-OCT) [1] is

a technique for microscopic fluid velocity measurement

using optical interferometry. Applications of D-OCT

include blood flow monitoring [1, 2]. Ideally, an cross-

sectional velocity map similar to Fig1. is desired.

However, depending on the physical configuration of a

D-OCT system, it is only able to measure velocity

within a range [-Vmax, +Vmax]. Velocity outside of this

range wraps around, causing the banding visible in

Fig2. (orange = +Vmax, blue = -Vmax). The

measurement tend to be noisy, making direct

unwrapping unviable.

Fig.1 Ideal cross-section fluid velocity map in a tube

Fig.2 Noisy output of a D-OCT measurement

Experimental Data Collection and Processing

A hand-held OCT probe was used to measure the velocity

map of diluted milk flowing through a tube. The flow rate was

controlled by a roller clamp. The system used in the

experiment is a commercial swept-spectrum OCT imaging

system (Diagnostic Photonics, Inc.) operating at 1310 nm,

with a spectral bandwidth of 100 nm, an A-scan rate of 50kHz

and an imaging aperture of 0.05 NA. The maximum velocity

this system can measure without wrapping is 1.74 cm/s.

Beyond this velocity, the wrapping shows up.

Results

Experimental datasets were processed using the algorithm. Below shows a comparison of the simulation and the experimental results. The average flow velocity ranges

from 0 cm/s to 8.6 cm/s, which corresponds to a peak velocity from 0 cm/s to 17.2 cm/s. Our algorithm generates a smooth velocity gradient from the noisy raw data, and

the results agrees well with the physically simulated velocity profile. Because of our modification on the original robust phase tracker that eliminates the inner dependence

between output pixels, the massively parallel floating point computation capability of the graphics card can be fully utilized by splitting the workload (pixels and optimization

dimensions) onto the CUDA cores.

Simulation Using Physical Model

Simulations were conducted using the model of laminar flow in cylindrical

tubes to estimate the true cross-sectional flow velocity map. When the

average flow velocity is known, the cross-sectional velocity map can be

modeled as

where r is the inner-radius of the tube, and ρ is the radius variable of the

polar coordinate system. According to this model, the fluid velocity at the

inner wall of the tube is 0, and the velocity at the center is 2Vavg.

Fig.3 Visualization of the window, the fitted phase, and the error map for pixel

(74, 56), generated at intermediate steps in CUDA kernel

[1] Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana, Illinois 61801, USA

[2] Diagnostic Photonics, Inc., 222 West Merchandise Mart Plaza, Suite 1230, Chicago, Illinois 60654, USA

Inspired by the Robust Phase Tracker

method [3] , we created a simpler

version for our purpose. The method

extracts the information and rejects the

noise by taking advantage of the spatial

correlation and redundancy of nearby

pixels. The algorithm is suitable for

massive parallel processing:

• Scan a n-by-n window around each

pixel across the input image, with

zero boundary condition.

• For window centered at (x0, y0),

- Fit the phase using spatial

frequencies

- Use the cost function

- Solve optimization problem:

- Output image:

0 0 0
ˆ(,) () ()x yx y x x y y       

         
2 2

0

window

ˆ ˆC , , cos (,) cos (,) sin (,) sin (,)x y x y x y x y x y         

 
0

0 0
(, ,) search space

ˆˆ ˆ, , argmin C , ,
x y

x y x y
  

     


  
 

0 0 0
ˆ(,)out x y 

Robust Phase Tracker (Modified for GPU)

Simple low-pass filtering don’t work here, because it also softens the +Vmax to -Vmax discontinuous

jumps in the image, making unwrapping impossible.

Inspired by the Robust Phase Tracker method [3] , we created a simpler version for our purpose. The

method extracts the information and rejects the noise by taking advantage of the spatial correlation

and redundancy of nearby pixels. The algorithm is suitable for massive parallel processing:

• Scan a n-by-n window around each pixel across the input image, with zero boundary condition.

• For window centered at (x0, y0),

- Fit the phase using spatial frequencies

- Use the cost function

- Solve optimization problem:

- Output image:

Fig.3 Visualization of the window, the fitted phase, and the error map for pixel (74, 56),

generated at intermediate steps in CUDA kernel

Robust Phase Tracker (Modified for GPU)

0 0 0
ˆ(,) () ()x yx y x x y y       

         
 0 0

2 2

0

(,) in window ,

ˆ ˆC , , cos (,) cos (,) sin (,) sin (,)x y

x y x y

x y x y x y x y         

 
0

0 0
(, ,) search space

ˆˆ ˆ, , argmin C , ,
x y

x y x y
  

     


  
 

0 0 0
ˆ(,)out x y 

Two input datasets with different fluid velocity

The corresponding filtered output

Experimental datasets were processed using the algorithm. The table shows a

comparison of the simulation and the experimental results. The average flow

velocity ranges from 0 cm/s to 8.6 cm/s, which corresponds to a peak velocity

from 0 cm/s to 17.2 cm/s. Our algorithm generates a smooth velocity gradient

from the noisy raw data, and the results agrees well with the physically

simulated velocity profile.

Because of our modification on the original robust phase tracker that eliminates

the inner dependence between output pixels, the massively parallel floating

point computation capability of the graphics card can be fully utilized by splitting

the workload (pixels and optimization dimensions) onto the CUDA cores. Below

shows the pseudo code of the CUDA kernel and some performance statistics.

Implementation and Results

Average Runtime Per Pixel Average Memory Access Average FLOPS

Achieved performance on Gtx-750Ti

(21 × 21 window)

(21 × 21 × 21 parameter space)

0.08 ms 463.37 MB/s 820 - 1230 GFLOPS

