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Conclusions and Discussions 

Using the modified Robust Phase Tracker algorithm, we demonstrated D-

OCT velocity map unwrapping of datasets with peak velocity as high as 17.2 

cm/s (~10 times Vmax). The results is verified by the simulation to be 

accurate and physical. This algorithm significantly extends the measureable 

range of D-OCT velocity maps. The implementation of this algorithm on 

CUDA brings significant acceleration to the algorithm, reducing the 

processing time for each of the images to the order of seconds. This makes 

semi-realtime filtering and unwrapping of such datasets possible. 
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Background 
 

Doppler optical coherence tomography (D-OCT) [1] is 

a technique for microscopic fluid velocity measurement 

using optical interferometry. Applications of D-OCT 

include blood flow monitoring [1, 2]. Ideally, an cross-

sectional velocity map similar to Fig1. is desired. 

However, depending on the physical configuration of a 

D-OCT system, it is only able to measure velocity 

within a range [-Vmax, +Vmax]. Velocity outside of this 

range wraps around, causing the banding visible in 

Fig2. (orange = +Vmax, blue = -Vmax). The 

measurement tend to be noisy, making direct 

unwrapping unviable. 

Fig.1 Ideal cross-section fluid velocity map in a tube 

Fig.2 Noisy output of a D-OCT measurement 

Experimental Data Collection and Processing 
 

A hand-held OCT probe was used to measure the velocity 

map of diluted milk flowing through a tube. The flow rate was 

controlled by a roller clamp. The system used in the 

experiment is a commercial swept-spectrum OCT imaging 

system (Diagnostic Photonics, Inc.) operating at 1310 nm, 

with a spectral bandwidth of 100 nm, an A-scan rate of 50kHz 

and an imaging aperture of 0.05 NA. The maximum velocity 

this system can measure without wrapping is 1.74 cm/s. 

Beyond this velocity, the wrapping shows up. 

Results 
 

Experimental datasets were processed using the algorithm. Below shows a comparison of the simulation and the experimental results. The average flow velocity ranges 

from 0 cm/s to 8.6 cm/s, which corresponds to a peak velocity from 0 cm/s to 17.2 cm/s. Our algorithm generates a smooth velocity gradient from the noisy raw data, and 

the results agrees well with the physically simulated velocity profile. Because of our modification on the original robust phase tracker that eliminates the inner dependence 

between output pixels, the massively parallel floating point computation capability of the graphics card can be fully utilized by splitting the workload (pixels and optimization 

dimensions) onto the CUDA cores. 

Simulation Using Physical Model 
 

Simulations were conducted using the model of laminar flow in cylindrical 

tubes to estimate the true cross-sectional flow velocity map. When the 

average flow velocity is known, the cross-sectional velocity map can be 

modeled as  

 

 

where r is the inner-radius of the tube, and ρ is the radius variable of the 

polar coordinate system. According to this model, the fluid velocity at the 

inner wall of the tube is 0, and the velocity at the center is 2Vavg. 

Fig.3 Visualization of the window, the fitted phase, and the error map for pixel 

(74, 56), generated at intermediate steps in CUDA kernel 
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Inspired by the Robust Phase Tracker 

method [3] , we created a simpler 

version for our purpose. The method 

extracts the information and rejects the 

noise by taking advantage of the spatial 

correlation and redundancy of nearby 

pixels. The algorithm is suitable for 

massive parallel processing: 

• Scan a n-by-n window around each 

pixel across the input image, with 

zero boundary condition. 

• For window centered at (x0, y0), 

- Fit the phase using spatial 

frequencies 

 

 

 

- Use the cost function 

 

 

 

- Solve optimization problem: 

 

 

 

- Output image: 
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Robust Phase Tracker (Modified for GPU) 



Simple low-pass filtering don’t work here, because it also softens the +Vmax to -Vmax discontinuous 

jumps in the image, making unwrapping impossible. 

 

 

 

 

 

 

 

 

 

Inspired by the Robust Phase Tracker method [3] , we created a simpler version for our purpose. The 

method extracts the information and rejects the noise by taking advantage of the spatial correlation 

and redundancy of nearby pixels. The algorithm is suitable for massive parallel processing: 

• Scan a n-by-n window around each pixel across the input image, with zero boundary condition. 

• For window centered at (x0, y0), 

- Fit the phase using spatial frequencies 

 

 

 

- Use the cost function 

 

 

 

- Solve optimization problem: 

 

 

 

- Output image: 

 

Fig.3 Visualization of the window, the fitted phase, and the error map for pixel (74, 56), 

generated at intermediate steps in CUDA kernel 

Robust Phase Tracker (Modified for GPU) 
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Two input datasets with different fluid velocity 

The corresponding filtered output 



Experimental datasets were processed using the algorithm. The table shows a 

comparison of the simulation and the experimental results. The average flow 

velocity ranges from 0 cm/s to 8.6 cm/s, which corresponds to a peak velocity 

from 0 cm/s to 17.2 cm/s. Our algorithm generates a smooth velocity gradient 

from the noisy raw data, and the results agrees well with the physically 

simulated velocity profile. 

 

Because of our modification on the original robust phase tracker that eliminates 

the inner dependence between output pixels, the massively parallel floating 

point computation capability of the graphics card can be fully utilized by splitting 

the workload (pixels and optimization dimensions) onto the CUDA cores. Below 

shows the pseudo code of the CUDA kernel and some performance statistics. 

Implementation and Results 

Average Runtime Per Pixel Average Memory Access Average FLOPS 

Achieved performance on Gtx-750Ti 

(21 × 21 window) 

(21 × 21 × 21 parameter space) 

0.08 ms 463.37 MB/s 820 - 1230 GFLOPS 


