Freedom of FREEFORMS Fewer elements Lighter weight Increased flexibility

Optimax Systems Inc.

Optimax helps its customers prove that great people can do great things with the right technology and support.

We leverage our optics manufacturing technology for programs that benefit mankind and projects that defend our freedom. Our know-how, innovation and speed enable quicker production of precision optics to meet emerging market needs.

What is a Freeform?

An optical surface with little to no symmetry.

Why design with freeforms?

Designing with freeforms will make your project have:

- Fewer elements
- Lighter weight
- Increased flexibility

And in the end overall better performance.

Freeform

Tolerancing Limits for Freeform Surfaces

Attribute	Minimum	Maximum
Diameter (mm)	20	500
Characteristics	Mild (interferometrically testable)	
	Wild (deviation less than size of part)	
	Extreme (deviation on order of size of part)	

Common Freeforms

Toroid

$$Z = \frac{C_x X^2 + C_y Y^2}{1 + \sqrt{1 - C_x^2 X^2 - C_y^2 Y^2}} \quad C_x = \frac{1}{R_x} \quad C_y = \frac{1}{R_y}$$

Atoroid/Biconic $Z = \frac{C_x X^2 + C_y Y^2}{1 + \sqrt{1 - (1 + k_x) C_x^2 X^2 - (1 + k_y) C_y^2 Y^2}} \quad C_x = \frac{1}{R_x} \quad C_y = \frac{1}{R_y}$

Acylinder

$$Z = \frac{C_x X^2}{[1 + \sqrt{1 - (1 + k)(C_x^2 X^2)]}} + a_1 X^2 + a_2 X^4 + a_3 X^6 + a_4 X^8 + a_5 X^{10}$$
$$C_x = \frac{1}{R_x}$$

Off-Axis Parabola (OAP)

$$Z = \frac{C_x X^2}{[1 + \sqrt{1 - (1 + k)(C_x^2 X^2)]}} + a_1 X^2 + a_2 X^4 + a_3 X^6 + a_4 X^8 + a_5 X^{10}$$

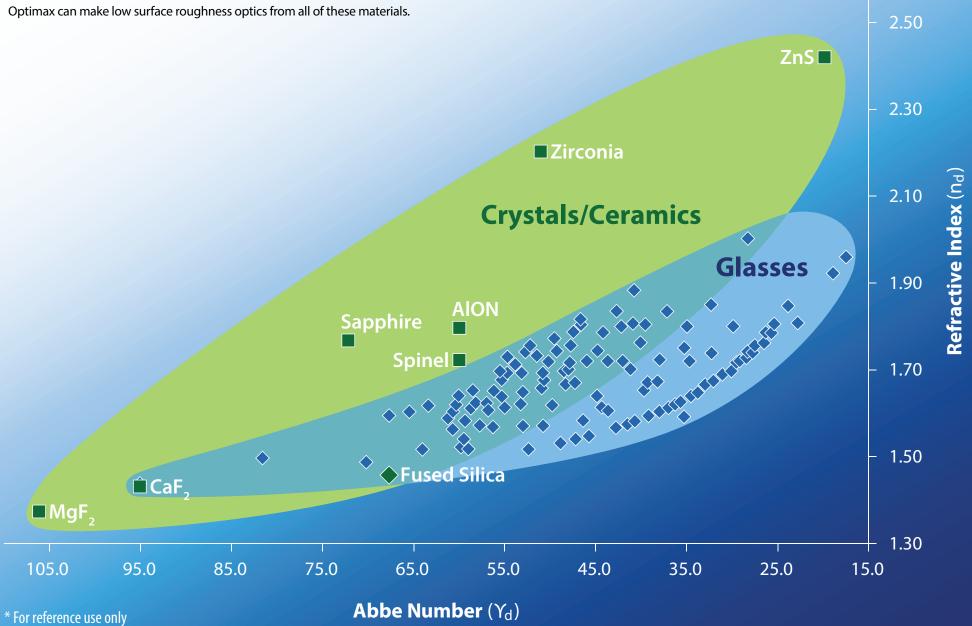
$$C_x = \frac{1}{R_x} \quad Where \ k = -1$$

Anamorph

 $Z = \frac{C_x X^2 + C_y Y^2}{1 + \sqrt{1 - (1 + K_x)(C_x^2 X^2) - (1 + K_y)(C_y^2 Y^2)}} + AR[(1 - AP)X^2 + (1 + AP)Y^2]^2$ $+ BR[(1 - BP)X^2 + (1 + BP)Y^2]^3 + CR[(1 - CP)X^2$ $+ (1 + CP)Y^2]^4 + DR[(1 - DP)X^2 + (1 + DP)Y^2]^5$ $C_x = \frac{1}{R_x} \quad C_y = \frac{1}{R_y}$

XYZ Freeforms or Solid Model

Freeform: Surface created from point cloud or solid model.



Other Equation Based Freeforms

Zernike Polynomials, XY Polynomials, etc.

sales@optimaxsi.com | 585.265.1020

Optimax Abbe Diagram*

Transmission Bands of UV, Visible and IR Materials*

	Glass	
	Calcium Fluoride	
	Sapphire	
	Barium Flouride	
	Spinel	
	AION	
	Diamond	
	Magnesium Oxide	
	Yttria	
	Multispectral Zinc Sulfide	
	Zirconia	
	Polycrystalline Alumina	
	Zinc Selenide	
	Magnesium Fluoride (hot pressed)	
	Chalcogenide	
	Silicon	
	Germanium	
).1	1 Wavelength (microns) 10	100

* For reference use only

6367 Dean Parkway, Ontario, New York 14519 | 585.265.1020 | sales@optimaxsi.com | optimaxsi.com